Pytorch实现mnist手写数字识别

2020/6/29

Hey,突然想起来之前做的一个入门实验,用pytorch实现mnist手写数字识别。可以在这个基础上增加网络层数,或是尝试用不同的数据集,去实现不一样的功能。

Mnist数据集如图:

代码如下:

  1. import torch  
  2. import torch.nn as nn  
  3. import torch.utils.data as Data  
  4. import torchvision      # 数据库模块  
  5. import matplotlib.pyplot as plt  
  6.   
  7. torch.manual_seed(1)    # reproducible  
  8.   
  9. # Hyper Parameters  
  10. EPOCH = 1           # 训练整批数据多少次, 为了节约时间, 我们只训练一次  
  11. BATCH_SIZE = 50  
  12. LR = 0.001          # 学习率  
  13. DOWNLOAD_MNIST = True  # 如果你已经下载好了mnist数据就写上 False  
  14.   
  15.   
  16. # Mnist 手写数字  
  17. train_data = torchvision.datasets.MNIST(  
  18.     root='./mnist/',    # 保存或者提取位置  
  19.     train=True,  # this is training data  
  20.     transform=torchvision.transforms.ToTensor(),    # 转换 PIL.Image or numpy.ndarray 成  
  21.                                                     # torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间  
  22.     download=DOWNLOAD_MNIST,          # 没下载就下载, 下载了就不用再下了  
  23. )  
  24. test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)  
  25.   
  26. # 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)  
  27. train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)  
  28.   
  29. # 为了节约时间, 我们测试时只测试前2000个  
  30. test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)  
  31. test_y = test_data.test_labels[:2000]  
  32. class CNN(nn.Module):  
  33.     def __init__(self):  
  34.         super(CNN, self).__init__()  
  35.         self.conv1 = nn.Sequential(  # input shape (1, 28, 28)  
  36.             nn.Conv2d(  
  37.                 in_channels=1,      # input height  
  38.                 out_channels=16,    # n_filters  
  39.                 kernel_size=5,      # filter size  
  40.                 stride=1,           # filter movement/step  
  41.                 padding=2,      # 如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/2 当 stride=1  
  42.             ),      # output shape (16, 28, 28)  
  43.             nn.ReLU(),    # activation  
  44.             nn.MaxPool2d(kernel_size=2),    # 在 2x2 空间里向下采样, output shape (16, 14, 14)  
  45.         )  
  46.         self.conv2 = nn.Sequential(  # input shape (16, 14, 14)  
  47.             nn.Conv2d(16, 32, 5, 1, 2),  # output shape (32, 14, 14)  
  48.             nn.ReLU(),  # activation  
  49.             nn.MaxPool2d(2),  # output shape (32, 7, 7)  
  50.         )  
  51.         self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes  
  52.   
  53.     def forward(self, x):  
  54.         x = self.conv1(x)  
  55.         x = self.conv2(x)  
  56.         x = x.view(x.size(0), -1)   # 展平多维的卷积图成 (batch_size, 32 * 7 * 7)  
  57.         output = self.out(x)  
  58.         return output  
  59.   
  60. cnn = CNN()  
  61. print(cnn)  # net architecture  
  62. """ 
  63. CNN ( 
  64.   (conv1): Sequential ( 
  65.     (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 
  66.     (1): ReLU () 
  67.     (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) 
  68.   ) 
  69.   (conv2): Sequential ( 
  70.     (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 
  71.     (1): ReLU () 
  72.     (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) 
  73.   ) 
  74.   (out): Linear (1568 -> 10) 
  75. """  
  76. optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters  
  77. loss_func = nn.CrossEntropyLoss()   # the target label is not one-hotted  
  78.   
  79. # training and testing  
  80. for epoch in range(EPOCH):  
  81.     for step, (b_x, b_y) in enumerate(train_loader):   # 分配 batch data, normalize x when iterate train_loader  
  82.         output = cnn(b_x)               # cnn output  
  83.         loss = loss_func(output, b_y)   # cross entropy loss  
  84.         optimizer.zero_grad()           # clear gradients for this training step  
  85.         loss.backward()                 # backpropagation, compute gradients  
  86.         optimizer.step()                # apply gradients  
  87.   
  88. """ 
  89. ... 
  90. Epoch:  0 | train loss: 0.0306 | test accuracy: 0.97 
  91. Epoch:  0 | train loss: 0.0147 | test accuracy: 0.98 
  92. Epoch:  0 | train loss: 0.0427 | test accuracy: 0.98 
  93. Epoch:  0 | train loss: 0.0078 | test accuracy: 0.98 
  94. """  
  95. test_output = cnn(test_x[:10])  
  96. pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()  
  97. print(pred_y, 'prediction number')  
  98. print(test_y[:10].numpy(), 'real number')  
  99.   
  100. """ 
  101. [7 2 1 0 4 1 4 9 5 9] prediction number 
  102. [7 2 1 0 4 1 4 9 5 9] real number 
  103. """  

 

这个项目还是很有意思,对于初学者可以先试着对32-60行进行修改,增加网络层数。看看最后效果如何。

九层之台,起于累土。那天看到一句话,一个人把自己的事情做好,已经很不容易了。现在回想起之前安安静静在实验室的日子感觉很遥远,这半年来总是有各种各样的烦心事儿,也少了很多可以静下心来安静学习的时间。也许这就是生活吧C'est La Vie。我们总是要迎接挑战的,虽然没法回学习但是在智星云组用的GPU也是一样的好用,环境都是配置好了的,用来做实验非常节省时间和精力。有同样需求的朋友可以参考:智星云官网: http://www.ai-galaxy.cn/,淘宝店:https://shop36573300.taobao.com/公众号: 智星AI,

最后再唠叨两句,明天就是6月的最后一天了,眼看着2020年就要过去一半了,岁月不居,时节如流。通过这次疫情也让我深刻的认识到管理好自己的时间是多么的重要。往者不可谏,来者犹可追。

 

PEACE

 

参考资料:

https://pytorch.org/docs/stable/index.html

https://morvanzhou.github.io/tutorials/machine-learning/torch/

http://www.planetb.ca/syntax-highlight-word

http://www.ai-galaxy.cn/

https://shop36573300.taobao.com/

 

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST手写数字识别MNIST是一个常用的数据集,包含了大量手写数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现手写数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的手写数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST手写数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰度图像,需要将其转换为标准的三通道RGB图像。 ```python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) ``` 第二步是构建模型。在MNIST手写数字识别问题中,可以选择使用卷积神经网络(CNN),其可以捕获图像中的局部特征,这对于手写数字识别非常有用。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() ``` 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch中,可以选择使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。 ```python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist手写数字识别mnist手写数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist手写数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集中的手写数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯度下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist手写数字识别的代码: ``` python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯度 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 以上就是一个基于PyTorchmnist手写数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值