1、经验风险最小化
2、结构风险最小化
最小二乘估计的基本要求是各个特征之间要相互独立,保证XX的转置 可逆。但即使其可逆,如果特征之间可能会有较大的共线性,也会使得 XX的转置 的逆在数值上无法准确计算。数据集上的一些小的扰动就会导致 XX的转置 的逆发生重大改变,进而使得最小二乘估计的计算变得很不稳定,为了解决这个问题,用岭回归来解决问题。
3、特征选择
4、评价指标
5、PAC学习理论
1、经验风险最小化
2、结构风险最小化
最小二乘估计的基本要求是各个特征之间要相互独立,保证XX的转置 可逆。但即使其可逆,如果特征之间可能会有较大的共线性,也会使得 XX的转置 的逆在数值上无法准确计算。数据集上的一些小的扰动就会导致 XX的转置 的逆发生重大改变,进而使得最小二乘估计的计算变得很不稳定,为了解决这个问题,用岭回归来解决问题。
3、特征选择
4、评价指标
5、PAC学习理论