神经网络与深度学习 邱锡鹏 私人学习笔记1

这篇笔记探讨了经验风险最小化和结构风险最小化在神经网络中的应用。提到了最小二乘估计的问题,当特征间存在共线性时,会引入计算不稳定性,为此介绍了岭回归作为解决方案。笔记还涵盖了特征选择和评价指标,并触及了PAC学习理论。
摘要由CSDN通过智能技术生成

1、经验风险最小化

2、结构风险最小化

最小二乘估计的基本要求是各个特征之间要相互独立,保证XX的转置 可逆。但即使其可逆,如果特征之间可能会有较大的共线性,也会使得 XX的转置 的逆在数值上无法准确计算。数据集上的一些小的扰动就会导致 XX的转置 的逆发生重大改变,进而使得最小二乘估计的计算变得很不稳定,为了解决这个问题,用岭回归来解决问题。

3、特征选择

4、评价指标

5、PAC学习理论

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值