邱锡鹏《神经网络与深度学习》学习笔记

1.传统的机器学习和深度学习的最根本的区别就是 :传统的机器学习是人为来选择特征,而深度学习是由网络自己进行特征的选择和学习。传统的机器学习是浅层学习。

2.神经网络可以看做一个通用的函数逼近器,一个两层的神经网络可以逼近任意的函数。

3.机器学习中常用的损失函数

4.经验风险最小化:

5.结构风险最小化:

6.似然函数是高斯分布函数的累乘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值