一、衡量模型好坏的指标,除了准确率、精确率、召回率、置信区间,还有F1 Score、AUC 曲线、PR 曲线、增益和提升图等,要结合具体业务场景,选择衡量指标,没有十全十美的模型;
二、回归模型有线性回归、逻辑回归、均值回归、多项式回归、逐步回归、岭回归、套索回归等等,其中逻辑回归属于分类回归,即因变量是有限的取值,将其Y调整为连续型变量的方式是Logit变化,公式为:
Logit(Y)=Log (Odds Y)=Log((Probability of Y event)/(Probability of no Y event))
三、聚类是无监督学习,最常见的聚类算法 K-Means;
四、蒙特卡洛与拉斯维加斯的区别,蒙特卡洛的原理是在有限的条件下,找出最优解,拉斯维加斯的原理是不找出最优解,就返回null;
五、马尔科夫链和RNN(Recurrent Neural Network)循环神经网络的区别,马尔科夫链只关注当下节点对下一节点的影响,而不考虑历史情况;RNN会将历史情况也纳入考量。