一、指标体系搭建
指标体系的通俗定义和选取原则
背景
- 对于某核心数据如日活,只知道数据在变化,但是不知道为何变化,产品为了解释这种现象,一会要这个数一会要那个数。
- 年度汇报时,产品跟数据要各种各样的数据,或者数据内部花费大量时间对各种各样的口径
- 每隔一段时间,产品都会拉上数据研发一起对埋点,总觉得当前的字段不够用,底层日志越来越大,数仓要修改的越来越多,取数越来越慢,错误越来越多。
原因解释
- 根本原因在于缺少指标体系的建设、宣贯、实施
- 业务方不重视是因为这个活是个基建活,离kpi完成太远,只有出问题时才会临时重视,数据方没重视是因为这个活是一个吃力不讨好的活,可能认为就是一个思维导图而已
- 真实答案是:要想把指标体系真正说明白不容易,而如果你都说不明白,你怎么判断你自己真的很懂呢,作为埋点、取数、分析的一切前提,这个活如果做不好,会始终发现很乱
指标体系的定义和选取原则
- 定义:在业务的不同阶段,分析师牵头、业务方协助,制定的一套能从各维度去反应业务状况的一套待实施框架
- 指标选取原则:根本性、可理解性、结构性
- 根本性:核心数据一定要理解到位和准确
- 可理解性:所有指标要配上业务解释性,如日活德定义是什么,打开还是点击还是进程在
- 结构性:能够充分对业务进行解读,如新增用户只是一个大数,我们还需要直到每个渠渠道德新增用户,每个渠道的新增转换率,每个渠道的新增用户价值等
指标体系的四步法
指标的构成
- 1、原子性指标:最基础的不可拆分指标,如交易额
- 2、修饰词(可选):某种场景,如搜索
- 3、时间段:时间周期,如双11
- 4派生指标=1+2+3:例如双11这一天通过搜索带来的交易额,次日留存、日活、月活、日转换率
1、厘清业务阶段和方向
- 业务前期:创业期
- 最关注盘子大小
- 业务前期,最关注用户量,此时的指标体系应该紧密围绕用户量的提升来做各种维度拆解,如渠道
- 业务中期:上升期
- 盘子大小、健康度
- 业务中期,除了关注用户量的走势,更加重要的是优化当前的用户结构,如看用户留存、如留存偏低,必然和产品模块有关系,是不是某功能流量承接效果太差
- 业务后期:成熟发展期
- 收入、市场份额
- 成熟发展期,一定要看收入指标,各种商业化模式的收入,同时做好市场份额和竞品监控
2、确定核心指标:多去了解业务和市场头部玩家
最重要的是找到正确的核心指标,相信我,这个可不是一件容易的事,不是因为这件事很难,而是所有人都去重新接受一些客观事实很难。
举例:某款产品的日活口径就是打开app,通过不断的买量,日活也一直在上升,然而分析师发现,打开app的用户中,3秒跳出率30%,非常不健康,那么当前的核心指标日活实际上已经有问题了,更加好的核心指标是停留时长大于3秒的用户数
每个app的核心指标都不一样,所以一定要花时间去考虑这件事,这个非常重要,不只是看日活和留存那么简单(趣头条)
3、核心指标维度拆解
核心指标的波动必然是某种维度的波动引起的,所以要监控核心指标,本质上还是监控维度核心指标
通用的拆解方法都是先对核心指标进行公式计算,再按照因为路径来拆
当前的核心指标是停留时长大于3秒的用户数
停留时长大于3秒的用户数=打开进入app的用户数×停留时长大于3秒的占比
- 打开进入app的用户数:
- 渠道转换率
- 打开方式
- 用户画像
- 停留时长大于3秒的占比:
- 停留时长的分布
- 停留大于3秒的用户特征和行为特征
- 停留小于3秒的用户特征,有无作弊可能
4、指标宣贯、存档、落地
- 宣贯:很多人都忽略这一步,没有指标的宣贯和存档,和业务核心人员沟通好之后就开始建报表,然后就完事了。实际上搭建好指标体系后,要当面触达所有相关的业务接口人,最好是开会并邮件。
- 存档:同时要对指标的口径和业务逻辑进行详细的描述存档,如***功能日渗透率=该功能的日点击人数/日活。只有到这一层,后面的人才能看懂是什么意思
- 落地:就是建核心指标的相关报表,实际工作中,报表都是在埋点前建好的,这样的话一旦版本上线就能立即看到数据,而且这个时候各方的配合度最高
- 分析师经常抱怨临时提数需求太多,就是因为指标体系没做好
知乎APP指标体系实操
1、当前业务发展阶段
知乎当前处于业务发展期和成熟期之间,2个论点
- 1、当前知乎的业务正在一个快速调整期,内容向娱乐大众化转型
- 2、商业化进行较大的探索,但不是做的很重,也就是说,无论是最核心的内容还是商业模式,都在探索当中
工作当中,这块只需要看每年的业务规划即可得到答案
2、核心指标及拆解
对于首页推荐产品,最重要的指标是问答数
问答数=提问数+回答数=提问人数×人均提问数+回答数×人均回答数
提问人数这里是否有必要按按照漏斗模型来拆?我的理解是不用
有些觉得可能评论点赞数应该是核心指标,实际上不是这样:
评论点赞多跟产品的健康度没有直接关系,评论点赞多的本质是因为提问回答比较精彩,这是一个相关性而不是因果关系,
很多做内容的同学,都觉得评论很重要,只要我评论做上去了,日活就能涨上去,数据相关性上是这样,但业务逻辑不对
所以评论点赞收藏这些都是一个二级功能,更底层的理解实际上是增加app的社交属性
3、会议、存档、建表
- 会议:产品(负责使用)、研发(负责打点)
- 存档:对不太好理解的指标要进行单独的解释,比如什么是日活
- 建表:确定好打点之后,就要建表,确保数据第一时间出来,能及时发现问题
根本不需要一套大而全的指标体系,只需要围绕当前的核心指标,解决最重要的问题即可
总结
- 指标体系这件事本质上是业务人员和分析师的逻辑性怎么样,非常重要
- 不同业务阶段指标体系不一样,核心指标一定要正确
- 核心指标的拆解通用模式都是先公式拆解,再按照业务模块、路径来分
- 指标体系的宣贯和存档必不可少
二、流量分析
背景
有了指标体系和报表之后,最重要的事情就是每天看各种数据,也就是流量分析
- 渠道分析—从哪来
- 转化分析—经过什么
- 价值分析—产生什么价值
- 波动分析,包括日常的监控分析
渠道分析
常见渠道及渠道分类、渠道的整个过程、渠道的关键指标
1、常见的渠道及渠道分类
- 内部渠道:
- 外部渠道:
2、渠道推广的整个过程
外部渠道、文案展示、落地页、下载、打开、浏览、注册、…、退出
3、渠道的关键指标及分析方法
- 关键指标:前期看有效用户数和次留,中期看次日、7日、30日留存,后期看ROI
- 分析方法:结构分析+趋势分析+对比分析+作弊分析
- 结构分析:对渠道先按照一级渠道来拆解、再按照二级渠道来拆解
- 趋势分析:看每个渠道的变化趋势,包括量级和留存
- 对比分析:不同渠道间的趋势对比
- 作弊分析:用户行为分析+机器学习,这块用python完成
转化及价值分析
漏斗分析、功能模块价值分析
1、漏斗分析
主界面全部uv > 店面页uv> 详情页查看uv> 加入购物车uv > 提交订单uv> 收银台uv> 交易完成uv
针对需要提升的某一步,核心思想是用户细分:
按照用户基础属性和行为属性来拆分
- 基础属性:手机品牌、地域、imei特征
- 行为属性:入口、时段、用户活跃度、用户标签、对有问题的群体进行针对性优化—精细化
2、功能模块常规分析
常规分析包括:
- 1、功能渗透率=功能用户数/大盘用户数:使用某功能的占比
- 2、功能功能留存率=第一天使用该功能同时第二天也使用该功能的用户数/第一天使用该功能的用户数
- 3、功能大盘留存率=第一天使用该功能同时第二天是大盘用户的用户数/第一天使用该功能用户数
- 另外一个必须关注数据:
大盘用户=所有功能用户排重+不使用任何功能用户:这部分群体也要监控起来,只有这样才是完整的大盘
3、功能模块价值分析
价值分析包括:
-
1、功能核心用户数:复合某种要求的功能用户数:一般包括使用次数、使用时长、使用天数、具备某种行为来定义核心——单纯用户数可能会出现一个悖论:所有功能在涨,但大盘在跌
-
2、功能对大盘贡献度,比如对大盘留存提升的贡献
功能A对大盘留存的提升贡献=功能A渗透率*功能A的大盘留存提升数 -
严格来讲,只有AB测试才能说明对大盘贡献度,但实际中就这种计算可以对不同功能进行横向对比。
-
3、功能带来的收入对比:每个功能每个月赚多少钱。
波动分析
1、流量波动分析方法—日活
日活波动=外部影响+内部影响
外部影响=行业变化+竞品变化=常识+外部事件+竞品策略
内部影响=数据统计+用户基础属性+用户行为属性
2、流量波动分析方法—留存
留存波动=新用户留存&老用户留存
新用户留存=渠道+渠道过程有关
老用户留存=所有功能用户去重留存+大盘非功能用户留存=功能A留存&功能B留存&功能C留存+大盘非功能用户留存
三、路径分析
路径分析定义
基于用户的所有行为,去挖掘出若干条重要的用户路径,通过优化界面交互让产品用起来更加流畅和符合用户习惯,产生更多价值:先有数据再验证假设
路径分析案例—以美团APP为例
路径分析思考
- 当前的路径分析是以功能点的时序整体分析为主,只有指标没有维度,而要想精细化运营,必须进行维度拆分,如通过不同入口进来的用户,他们的路径分析差异在哪
- 对于有些APP,比如携程旅行,用户可能在打开APP后逛了一会儿,过一周再进来逛并下单,对于这种用户不连续性路径,如何进行分析,其实这是一个行业难题。
- PC端的路径分析和APP端的路径分析最大差异在哪,PC端有没有案例分享
四、竞品分析
为何要做竞品分析
1、背景
波特五力模型:上/下游、行业内部竞争、潜在竞争、可替代品
2、工作中竞品分析的场景
- 准备进入:侧重行业规模和前景
- 发展下降阶段:侧重头部玩家的玩法分析
- 瓶颈阶段:持续监控对手数据,寻找突破
- 快速发展阶段:一般不做竞品分析
3、什么是竞品分析
- 竞品的选择:
- 分析什么点
竞品分析的步骤
1、分析的目的是什么?
- 尝试进入,需评估可行性:偏行业趋势、市场规模、财务收入、看大数不拘泥小节
- 纯粹看竞品的功能、玩法和数据,学习优点:以功能体验、运营手法、具体数据为主、最常见落地性非常强
- 通过看竞品的不同迭代的功能、玩法和数据,揣摩竞品想干啥—预防为主:思考竞品的战略中心在哪
2、挑选1-2家竞品,进行对比分析
- 挑选1-2家真正竞品:核心功能一样
- 功能体验分析:不需要大而全
- 运营手法分析:某个功能的运营手法
- 宏观微观数据分析:数据源很关键(基础数据、财务数据、市场数据)
3、给出初步分析结论
- 尝试进入:评估可行性、如何开始做,SWOT分析
- 学习竞品:竞品什么功能好,接下来产品运营会如何去做,预计带来收益多少、产品运营参与很重
- 揣摩竞品:竞品下一步战略是什么,要不要跟进,这种最难。
案例介绍
五、营销活动分析
营销活动现状
背景:
现状:活动参与人数、拉新数、用户画像
理解:
1)分析的连贯性:活动前、中、后
2)分析的对比性:活动与活动间对比,什么样的活动比较适合产品本身
3)分析的公正性:拉新促活品牌的评判都应该有一套商定好的标准
营销活动分析无非就两件事:活动效果评估(本活动和活动对比)和活动优化建议
营销活动具体怎么分析
1、理一理
2、活动前好好准备—前1~2周
- 和运营方商定本次活动的目标
- 和研发沟通好埋点:不是每个研发都很靠谱,及时靠谱也可能犯错,埋点这件事上就应该是分析师主导,包括字段名、埋点位置、上报方式
- 搭建好指标体系和报表:提前做好,活动前1天才发现问题太常见
- 定好输出格式:活动中、活动后每天输出哪些数据,什么形式
3、活动中好好观察—期间每一天,包括预热
- 观察第1天数据
- 观察1~3天数据:
- 定时输出活动战报:
- 活动一周数据
4、活动后好好复盘—公正性
- 活动对大盘的影响:难做但有解决方法
- 活动短期的效果:目标完成度、参与人数、拉新、品牌传播指数
- 活动的长期效果:通过活动带来的长期用户数,而不是低价值用户
- 活动存在的问题:包括产品设计和用户反馈
尽量在活动后1~2周内输出
案例讲解—百度APP为例
活动介绍
拉新:右上角分享
促活:刷资讯找礼物
活动奖励:送现金+机票
体验感受:功能非常简单,但文案写的太复杂
活动日期:
六、用户增长分析
用户增长模型理解
- Acquisition拉新:
- Activation激活:
- Retention留存:
- Revenue变现:
- Referral推荐:
- 如果这样会好很多:留存–>变现–>推荐–>拉新–>激活
- 未来可能会这样:变现–>推荐–>拉新–>激活–>留存
- 最好是这样:不要去纠结模型和玩概念、不要指望数据分析找到一个牛B增长点、如果有大腿可以抱坚决抱、研究自己的产品和用户找到问题建立产品壁垒、学习优秀产品玩法思考本质、分析师的任务是做规模和带收入独立思考
国内的用户增长现状
1、现状
书:增长黑客+增长黑客实战+引爆用户增长
大会:Growing IO,推广自己的growing io 大数据平台
公司:成立用户增长小组
2、看似很唬的几个用户增长方法
- 魔法数字:一个用户阅读篇数超过3篇,留存将大大提升
- 优化渠道结构,提升新增用户留存:好渠道有限、渠道链路长很多因素控制不了、反馈周期长。
- 流失用户召回:召回除了push,还能干啥,不如放在流失原因分析上
3、实际很好的2个增长思维
- 北极星指标:一定要找到最核心指标,不断拆解,拆解后指标和kpi挂钩。MAU=新增+老=本月新增+上月新增留存+上月老留存+上月老回流
- ab测试:公正性和快速反馈性:1)要基于数据分析来做ab测试。2)ab测试不只看个结果数据这么简单,还要看过程数据、排坑是第一步
4、我们可以学到什么
- 增长黑客这本书是怎么火的:抱大腿不断背书很重要。
- Growing IO:这个平台有哪些功能很好,我们大数据平台可以怎么优化
增长案例解析
摩拜案例解读
- 漏斗模型很容易发现引导页问题
- 身份证和押金的前后顺序是产品设计层面,其实是ab测试,所有团内都要把当前工作跟北极星指标结合起来
- 转化率这条漏斗实际上很长,同时还要做各种维度拆解
- 产品本身功能很简单,这个时候运营就非常关键
- 活动运营分析:拉新、促活、传播