完全免费!3步让 Coze 智能体的绘图能力暴涨10倍

🌳 公众号:熊猫 Jay 字节之旅
🎈 致力于科普 AI 知识和工具,让更多普通人抓住 AI 红利。关注我,了解更多 AI 前沿资讯。

最近有位朋友问我: Coze 的图像流生成的图片质量一般, 有没有解法?

答案是肯定的。

Coze 图像流,优点在于简单易用,功能丰富,提供了风格转换、图像优化的功能,但还难以满足一些追求高质量画质的创作者的需求。

既然 Coze 允许自定义插件,为什么不试试把 Stable Diffusion 接入进来呢?

毕竟 Stable Diffusion 作为绘图界神一般存在的开源模型,可以为我们生成高质量、高分辨率且逼真的图像。

没错,今天我要和大家分享的,就是如何在 Coze 上自定义 Stable Diffusion 插件,让你的 Coze 智能体生成出媲美专业设计的高质量图片。

更重要的是完全免费 ~

先提前剧透下,可以从看出右边 SD 生成的效果更逼真。(左侧:Coze 图像流、右侧:SD 插件

SD 插件怎么接入 Coze 呢?接下来我们一起来实操下。

一、创建插件

1、进入硅基流动,注册后进入体验中心,获取 API 密钥。

体验中心直达地址:https://cloud.siliconflow.cn?referrer=clypt320l00bhows7o62a0pk3

2、进入 API 手册,选择对应的 SD 版本,并输入 Key, 在线验证下。

地址:https://docs.siliconflow.cn/reference/stabilityaistable-diffusion-3-medium_text-to-image-1

3、 来到 Coze,按照下图进行创建插件。

首页地址:https://www.coze.cn

注意选择 授权方式Service,位置 为 **Header,**再配置 API 密钥。

4、插件创建成功,再点击 创建工具

5、按照步骤配置工具的信息。

6、配置 API 接口文档中要求的输入参数,简单解释下。

输入参数中也支持 负面提示词 – negative_prompt ,也就是告诉模型不能出现的情况。由于非必需,本次演示没有配置,大家也可以按需优化。

参数解释
promptSD 绘画提示词
image_size图片大小,有 1024x1024,1024x2048,1536x1024,1536x2048、2048x1052、1052x2048
batch_size样本数,图片生成的数量。
num_inference_steps降噪步骤数,越高质量越高,但是生成时间也越久。
guidance_scale引导强度,越小越接近提示词的内容,但是不是越小越好,看调试结果来定。

7、通过输入测试数据的方式自动解析输出参数。

8、再调试一下,当我们看到 Response 给出了图片 url,就代表调试成功了。

记得发布插件,不然在创建工作流时无法找到未发布的插件。

二、创建工作流

由于之前我们演示过如何自定义插件,我会跳过一些步骤,只会讲解工作流的关键步骤。

1、创建工作流。

2、选择插件。

3、完成工作流的配置,详细流程如下:

  • 用户输入文本。

  • 大模型将文本转换成 SD 绘画提示词。

  • 插件自动生成图片链接。

  • 返回给用户。

提示词我放在一份文档里了,评论区回复 “SD 提示词” 领取。

拿去世界人工智能大会的公众号文章开头来试一试。

得到了插件返回的链接后,我们来看下效果。

效果和预期相比稍微差了点,怎么说呢,有点偏动漫风了。

调整下参数:降噪步骤数引导强度

  • num_inference_steps:30

  • guidance_scale:4.5

再测试下,效果立竿见影。

看起来没啥问题,那接下来可以创建 Bot 了吗?

还不能。

现在面临一个小问题,图片是一个网络地址,这样就得点击链接进行查看。用户肯定希望能在 Coze 返回中直接查看。

那怎样让图片在 Coze 中直接显示出来呢?

我们得使用 Markdown 语法 ![](图片 URL)。接下来我们需要使用一个新组件:文本处理

用字符串拼接的方式,将插件返回的图片链接变成 Markdown 语法。再返回给 结束 节点。

我们测试下效果,结果对了。

如果担心语法存在问题,怕走回头路,怎么办?

可以将输出结果粘贴到本地的 Markdown 工具,或者找一些在线的 Markdown 工具,看看图片能否显示。

我用本地的 Markdown 工具 — Typora 试了下,图片可以正常显示。

发布一下, 接下来,开始搭建 Bot。

三、创建 Bot

1、创建 Bot,并添加上一步创建的 SD 文生图 工作流。

2、暂时用不到太多功能,只要配置开场白预设问题,就完事儿了。

试下效果。再提供一段个人免费知识星球的短文动态,发现可以正常显示图片。

再来一张。画质很给力~

Bot 地址:https://www.coze.cn/s/iMhfBHWP/,欢迎测试和反馈。

Bot 中的 SD 提示词,我放在一份文档里了,评论区回复 “SD 提示词” 领取。

四、总结

就这样,通过配置自定义插件,我们成功地将 Stable Diffusion 的强大功能引入了 Coze 智能体。

无论是为文章配图,还是制作精美的封面,都不在话下。

有小伙伴告诉我自定义插件门槛高,太难了,没有技术背景学不会。

我想说,千万别被吓到,配置不难,关键在于找到解决问题的接口平台。

与其咒骂黑暗,不如燃起一支明烛。

各位,用起来~

我是熊猫 Jay,致力于通俗解释 AI 技术和工具的使用方式,让更多普通人抓住 AI 红利。

你还希望利用智能体解决哪些问题,欢迎评论区告诉我 ~

如果觉得不错,随手点个赞、收藏、转发三连吧。

谢谢你看我的文章 ~

### 如何搭建 Coze 智能体 #### 准备工作环境 为了成功部署 Coze 智能体,需先配置合适的工作环境。这通常涉及安装 Python 和必要的库文件。推荐使用虚拟环境来管理依赖项,以确保项目的独立性和稳定性[^1]。 ```bash python3 -m venv coze-env source coze-env/bin/activate pip install --upgrade pip ``` #### 安装所需软件包 接着要安装运行 Coze 所必需的各种Python库。这些库可能包括但不限于 requests, pandas 或者其他特定于项目需求的数据处理工具。具体命令如下所示: ```bash pip install -r requirements.txt ``` 其中 `requirements.txt` 文件应包含所有外部依赖关系列表[^2]。 #### 获取源码并初始化数据库 从官方仓库克隆最新版本的Coze智能体源代码到本地机器上,并按照说明文档中的指示完成初始设置过程,比如创建和迁移数据库表结构等操作[^3]。 ```bash git clone https://github.com/coze-project/coze-agent.git cd coze-agent ./init_db.sh ``` #### 配置参数调整 依据实际应用场景修改配置文件内的各项参数设定,如API密钥、端口监听地址以及其他敏感信息等内容。务必妥善保管好相关凭证资料以防泄露风险[^4]。 #### 启动服务进程 最后一步就是启动整个应用程序的服务端部分了。一般情况下可以通过执行入口脚本来实现这一点;如果是在生产环境中,则建议采用更稳健的方式来进行守护和服务注册等工作[^5]。 ```bash python app.py runserver --host=0.0.0.0 --port=8080 ``` 通过上述步骤即可顺利完成Coze智能体的基础构建流程。当然,在此之后还需要不断优化性能表现以及增强功能特性等方面的努力才能让其真正发挥价值所在。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值