抢先体验:Claude + MCP 零成本实现网络搜索+网页爬虫

等了这么久,Claude 终于能联网搜索了!

我第一时间打开了 Claude,想要体验这个期待已久的功能。

结果一看提示:仅限美国付费用户使用。

是的,又是那道熟悉的付费墙。

但今天,我发现了一个小技巧 —— 通过 MCP + Claude 桌面端,让免费用户也能立刻体验联网搜索功能,甚至还能直接爬取网页数据,无需复制粘贴。

我们来看看效果:

Claude + MCP 零成本实现网络搜索+网页爬虫

一、准备事项和工具理解 

正常使用之前,我们需要做一些准备。

  • 下载 Claude 桌面版

  • 获取 Tailvy key

  • 安装 Node.js v20 及其以上版本

我们先来下载 Claude Desktop ,地址:https://claude.ai/download

再到 Tailvy 获取密钥,用于联网搜索以及网页内容抓取。

每个月提供 1000 次免费搜索次数,对于普通人来说,真的够用了。

地址:https://app.tavily.com/home

Tavily 是什么?

它是一个专为 AI 助手设计的搜索引擎,就像是 AI 的专属谷歌。

通过 Tavily 搜索 API,开发者可以让 AI 应用轻松获取网上最新的信息。

Tavily 主要做的事情就是帮 AI 找到靠谱的信息源,让 AI 回答问题时更准确、更可靠。

接下来,我们需要安装 Node.js 作为运行环境,它负责启动 Tavily 的 MCP 服务端。

什么是 Node.js ?

平时我们看到的 JavaScript 只能在网页浏览器里工作,但有了 Node.js,JavaScript 就能像普通电脑程序一样独立运行,不需要浏览器了。

这就好比把一个只能在水里游的鱼突然获得了在陆地上行走的能力。

如果 Mac 本地装过 Homebrew,可以直接使用命令安装:

brew install nodejs

Windows 如果已经安装过 WinGet,可以直接使用如下命令:

winget install -id OpenJS.NodeJS -e

或者干脆直接在官方安装, 地址: https://nodejs.org/en/download

相关的安装包,我都整理好了,文末领取。

开篇说了,这次是利用最近非常火的 MCP 和 Claude 桌面版集成,从而让 Claude 拥有更多功能。

那什么是 MCP呢?

你可以把它理解成 AI 领域的通用 USB 接口,是目前业内通用的模型上下文协议,由 Anthropic 开发。

有了它,像 Claude 这样的大模型,就能安全、高效地和外部工具快速连接,从而拥有更多功能,帮我们轻松搞定更复杂的任务。

简单来说:一个接口,搞定 AI 与世界的沟通!

二、配置 

做好了前面的准备事项后,接下来我们来完成 Tavily 和 Claude 桌面版的配置。

首先我们打开命令行:

  • Mac: Command + 空格, 输入 Terminal

  • Windows: Win + R,输入 cmd

打开后,输入以下命令,编写 MCP 配置文件。

Mac:

# 创建配置文件
touch "$HOME/Library/Application Support/Claude/claude_desktop_config.json"

# 编辑配置文件
open -e "$HOME/Library/Application Support/Claude/claude_desktop_config.json"

Windows:

code %APPDATA%\Claude\claude_desktop_config.json

将 your-api-key-here 替换为之前准备的 Tavily API 密钥。

编辑完成后,重新打开 Claude 桌面端。

这时,我们能看到右侧的 锤子图标。点开图标,就能看到目前集成了哪些功能。

三、案例 

一切就绪后,我们来试用下。

一)网络搜索

为了对比集成 Tavily 后的效果,我们先来验证一下 Claude 网页端的搜索功能。

搜下目前 最喜欢的 NBA 球队 -- 快船队,最近的比赛战绩。

emmm...... 没开会员,就是不给你用网络搜索,搜索结果中显示知识截止到 2024 年 10 月。

再来试试集成了 Tavily 的 Claude 桌面版。

当用户问题涉及最新信息时,客户端会 利用 MCP 自动调用 Tavily,还会弹出框要求我们允许运行。

没错,最终拿到了预期的结果,包含最近爆冷赢下的一场焦点战。

二)网页提取内容

作为公众号博主,我过去经常用 Claude 来分析爆款文章,辅助创作。

但 Claude 不支持网页抓取,每次都要手动复制网页内容,实在麻烦。

现在 Claude 开放了网络搜索,有人问:“开会员不就能抓取网页了吗?”

其实不然,这是个常见误区——大模型支持搜索 ≠ 能直接抓取网页信息

很多朋友也有类似疑问,所以这次正好聊聊其中的区别。

网络搜索是利用搜索引擎提供的功能来获取最新信息。

网页信息抓取则是批量访问网页,解析网页结构,抓取表格、文字、图片等信息,甚至需要面对有些网址的反爬策略。

为了验证 Claude 是否同时具备网页信息抓取功能,我特地续费了会员。

输入几次问题,官方反复调用了几次联网插件,但还是 抓取不到公众号网页的信息

我们来试试集成了 Tavily 的 Claude 桌面版。

备注:如果过程中遇到弹出框,记得点击允许调用 tavily - extract。

输入问题和网页链接后,最终能得到对标文章完整内容的拆解。

这是一个简洁的拆解提示词,借助 Claude 分析得很到位。

特别是在 标题中每个关键字的出发点、读者互动设计里的举例、成功的因素、优化空间 这些维度,都给出了清晰的解答。

我是一名AI自媒体博主,请帮助我从"标题、结构、内容深度、语言风格、读者互动设计、成功因素、可优化空间"这些维度分析这篇公众号爆款文章:"""XXX""", 注意保持内容简洁。

四、总结 

不只是 Tavily, 目前网络上出现了大量 MCP 服务端,有网络数据抓取、旅游规划、文件读取、操作数据等等工具。

我们都可以将他们和 Claude 桌面版本或者其他客户端进行集成。大家可以自行体验下。

地址:https://github.com/punkpeye/awesome-mcp-servers

无论是用免费的方法,还是付费,我们都能用上 Claude 的联网功能了。

大模型的迭代加速了人类知识获取的效率,而工具的创新重塑了我们工作方式。

当 AI 能自主探索网络,我们的思考边界也随之拓展。

已经习惯用 Claude 写作的我,准备用它 + MCP 来持续改善我的 AI 工作流。

正在看文章的你,准备好用它改变工作方式了吗?

我是 🐼 熊猫 Jay,希望本次分享能有所帮助。

如果觉得不错,随手点个赞、收藏、转发三连吧。

如果想第一时间收到推送,也可以给我个关注 ⭐

谢谢你看我的文章 ~

关注 ⬇️, 回复 ”tavily“ ,一键领取 文章相关的安装包和软件。

### DeepSeek与MCP集成概述 DeepSeek作为一种先进的大型语言模型,在处理特定类型的复杂任务上表现出色,而MCP(Multi-Agent Collaboration Protocol)则提供了一种有效的机制来协调多个智能体之间的协作。当两者结合时,可以创建强大的自动化解决方案。 对于代码编写类的任务,倾向于采用DeepSeek作为底层支持引擎;而对于自然语言处理或者文案创作,则更偏向于使用Claude这样的预训练模型[^4]。这种灵活性使得开发者可以根据具体应用场景的需求灵活调整配置方案。 #### 集成指南 为了实现两者的无缝对接,通常会遵循以下几个原则: - **定义清晰的角色分工**:确保每个组件都有明确的功能定位。例如,通过TaskPlanner规划具体的子任务,并由ToolExecutor负责实际执行这些指令。 - **利用MCP协议促进交流**:借助该协议所提供的标准化接口,不同类型的代理之间能够高效沟通,共享必要的上下文信息。 - **实施严格的验证流程**:最后一步总是要经过ResultValidator的严格审查,以确认最终产出的质量达到预期标准。 ```python def integrate_deepseek_mcp(task): """ 将DeepSeek融入到MCP框架下的示例函数 参数: task (str): 待完成的工作描述 返回: dict: 经过验证后的结果报告 """ from deepseek import CodeGenerator, TextWriter # 导入所需的工具包 planner = TaskPlanner(task) if 'code' in planner.task_type.lower(): executor = CodeGenerator(planner.subtasks) # 对于编程相关任务启用CodeGenerator elif 'text' in planner.task_type.lower(): executor = TextWriter(planner.subtasks) # 文本生成场景下选择TextWriter else: raise ValueError('Unsupported task type') validator = ResultValidator(executor.execute()) # 获取并检验输出成果 return validator.get_final_report() ``` 此段代码展示了如何根据不同任务性质自动匹配合适的处理器实例,并且在整个过程中保持与其他参与方的良好互动关系。 #### 实际应用案例 一个典型的例子是在招聘环节中运用上述技术组合来进行候选人简历初筛工作。整个过程大致如下所示: 1. 接收HR部门提交的一批求职者资料; 2. 启动main_agent()启动程序,它内部包含了planner、executor和validator三个主要角色; 3. 根据职位要求设定筛选条件,比如技能标签匹配度计算等; 4. 输出一份详尽的人选推荐列表供进一步审核参考。 这种方法不仅提高了工作效率,还减少了人为因素带来的偏差可能性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值