What: 《Understanding Convolution for Semantic Segmentation》是图森研究组对语义分割的一次深入的研究实验。不仅做了DUC和HDC两个很好的突破,还对语义分割的各个影响因素做了对比实验。文章两个重要的创兴点是DUC和HDC:
DUC:可学习的上采样卷积,以维度信息C取特征图的尺度H和W。
HDC:混合空洞卷积,所谓混合是指空洞率不是保持不变的(例如一直是2),而是变化的(例如一组:1,2,5)。
文章除了提出DUC和HDC外,还做了大量的对比试验,探究了采样率(DS)、ASPP通道数、数据增强(augmentation)的应用、cell数(1,2 这个我也不清楚是啥)、批尺寸(patch size)的影响,以及以下对比:DUC与线性插值去卷积的对比(不可学习上采样)、有无CRF条件随机域的