《Understanding Convolution for Semantic Segmentation》论文笔记

本文是《Understanding Convolution for Semantic Segmentation》的读书笔记,深入探讨了卷积神经网络在图像语义分割任务中的作用,阐述了如何通过卷积操作提升分割精度,并分析了不同类型的卷积层对结果的影响。
摘要由CSDN通过智能技术生成

What:    《Understanding Convolution for Semantic Segmentation》是图森研究组对语义分割的一次深入的研究实验。不仅做了DUC和HDC两个很好的突破,还对语义分割的各个影响因素做了对比实验。文章两个重要的创兴点是DUC和HDC:

DUC:可学习的上采样卷积,以维度信息C取特征图的尺度H和W。

HDC:混合空洞卷积,所谓混合是指空洞率不是保持不变的(例如一直是2),而是变化的(例如一组:1,2,5)。

文章除了提出DUC和HDC外,还做了大量的对比试验,探究了采样率(DS)、ASPP通道数、数据增强(augmentation)的应用、cell数(1,2  这个我也不清楚是啥)、批尺寸(patch size)的影响,以及以下对比:DUC与线性插值去卷积的对比(不可学习上采样)、有无CRF条件随机域的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值