语义分割--Understanding Convolution for Semantic Segmentation

Understanding Convolution for Semantic Segmentation
https://arxiv.org/abs/1702.08502v1
模型 https://goo.gl/DQMeun

针对语义分割问题,我们从两个方面进行改善,一个是dense upsampling convolution (DUC) 代替 Bilinear upsampling,另一个是用 hybrid dilated convolution (HDC) 代替 传统的 dilated convolution。

3.1. Dense Upsampling Convolution (DUC)
输入图像经过CNN卷积网络模型提取得到的特征层,尺寸减小了很多倍。但是由于语义分割需要输出原尺寸大小的结果图像,所以一般的算法对CNN模型输出的特征层进行Bilinear upsampling或 deconvolution 来放大特征图尺寸,使其和输入图像尺寸一致。
这个放大的环节存在一些问题: Bilinear upsampling is not learnable and may lose fine details.
deconvolution, in which zeros have to be padded in the unpooling step before the convolution operation

这里我们提出了一个小的 卷积网络模块 DUC 用于实现放大特征图尺寸目的。
这里写图片描述

DUC的输入是 ResNet 网络的输出 feature map h×w×c,我们使用 DUC 输出的 feature map 尺寸为
h×w×(r*r × L) , 最后将这个结果 reshaped 得到 输入图像尺寸大小的 H × W × L 。完成了放大工作
其中 L 是语义分割总的类别数目, r 是ResNet 中的 downsampling factor。

DUC的核心思想就是将完整的 label map 等分为 r*r 个相同大小的子块,每个字块的尺寸就是输入的feature map 尺寸。换句话说我们将 整个 label map 映射为一个含有多通道的小 label map。这个映射可以让我们直接使用卷积操作由输入feature map得到 output label maps

DUC因为是可学习的,它能够捕捉一些细节信息。
Since DUC is learnable, it is capable of capturing and recovering fine-detailed information that is generally missing in the bilinear interpolation operation.

最后DUC 很容易嵌入到FCN中去。

3.2. Hybrid Dilated Convolution (HDC)
在 FCN 中我们使用 Dilated Convolution 主要是
maintain high resolution of feature maps in FCN through replacing the max-pooling operation or strided convolution layer while maintaining the receptive field of the corresponding layer.

Since all layers have equal dilation rates r
如果所有网络层都使用相同的 dilation rates r,会导致一个问题,如下图所示:
这里写图片描述

卷积采样 very sparse,局部信息不完整,信息不相关,信息不一致
1) local information is completely missing; 2) the information can be irrelevant across large distances. Another outcome of the gridding effect is that pixels in nearby r×r regions at layer l receive information from completely different set of “grids” which may impair the consistency of local information.

这里我们提出了 hybrid dilated convolution (HDC)
we use a different dilation rate for each layer

4 Experiments and Results
这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

explicit spectral-to-spatial convolution for pansharpening是一种用于全色融合的显式光谱到空间卷积方法。全色融合是将高分辨率的全色(黑白)图像与低分辨率的多光谱(彩色)图像融合,以提高图像质量和细节。传统的融合方法常常使用高通滤波器进行频域操作,而explicit spectral-to-spatial convolution for pansharpening则使用基于卷积的空间域方法。 该方法基于以下原理:在全色图像中,光谱分辨率高,但空间分辨率较低;而在多光谱图像中,光谱分辨率较低,但空间分辨率较高。因此,通过将全色图像的光谱信息传递给多光谱图像,可以提高多光谱图像的空间分辨率。 explicit spectral-to-spatial convolution for pansharpening方法通过使用卷积核,将全色图像的光谱信息转换为空间域的高频细节。这个卷积核是根据光谱和空间信息之间的关系而设计的。通过将这个卷积核应用于低分辨率的多光谱图像,可以增强其空间细节,使其接近高分辨率的全色图像。 这种方法的优势在于显式地将光谱信息转换为空间域的细节,能够更好地保留图像的光谱特征和空间细节。与传统的频域方法相比,显式光谱到空间卷积方法更容易实现,并且能够更好地适应各种图像场景。 总之,explicit spectral-to-spatial convolution for pansharpening是一种通过卷积将全色图像的光谱信息转换为多光谱图像的空间细节的方法,以实现全色融合,提高图像质量和细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值