[论文阅读] Geometry Normalization Networks for Accurate Scene Text Detection

该论文提出Geometry Normalization Networks解决CNN在文本检测中对几何变化覆盖有限的问题。通过Scale和Orientation Normalization Unit增加模型的几何变化处理能力,并采用数据增强确保各分支充分训练,从而提高检测准确性。
摘要由CSDN通过智能技术生成

原文链接: Geometry Normalization Networks for Accurate Scene Text Detection

思想:

这篇论文的角度是CNN模型对于文本检测的框的geometry variance的覆盖范围是有限的(用有限的variance来训练得到的检测器结果最好),首先验证,后提出通过新增几个不同的branch(Scale Normalization Unit和Orientation Normalization Unit的组合)来构成不同的检测器,因为每个子检测器都有自己的variance,组合起来就是large geometry variance,就能覆盖好很多框.同时,为了这个独特的设计,作者还改变了图片输入的方式,保证每个branch都得到充足的训练.

问题的提出:

在这里插入图片描述
前提: 通过(a)中橙色线的分布,可以看出,icdar15的框多为水平框(angle呈均值为0,方差较小的正态分布).作者想出了,如果增大angle variance的范围的话,可以通过算法的表现来观看算法对geometry variance的覆盖能力.

作法: 作者通过随机旋转样本的方式扩大了icdar15的框的geometry variance,后做了训练集和测试集是否有扩大geometry variance的消融实验,得到了,即便是训练集为large geometry variance,训练得到的模型在large geometry varian

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值