BERT在关系学习中的应用

该论文提出了一种基于Transformer的无监督关系学习方法,名为Matching the Blanks (MTB)。模型利用BERT对实体对之间的关系进行编码,通过在文本中替换实体为[BLANK]来训练,无需有监督数据。实验表明,这种方法在关系匹配和少量样本关系分类任务中表现出色。
摘要由CSDN通过智能技术生成

Matching the Blanks: Distributional Similarity for Relation Learning2019 ACL

 

典型的关系抽取可以大致分为以下三类:

  • 第一类有监督或者远程监督的关系抽取,该类方法通过有限的模式去学习文本到关系之间的映射关系。
  • 第二类为开放领域的关系抽取,该类方法消除了预定义模式的限制。
  • 第三类为泛化能力较强的通用模式,该类方法既包含文本的多样性又包含关系的简洁性。

 

该论文主要依据关系的分布式假设,提出了一种直接从文本中学习关系表示的新方法。本文的主要贡献有以下两个方面:

  • 该模型主要基于Transformer结构对实体对之间的关系进行编码。
  • 该模型训练表示关系不需要任何的有监督数据或者是人类标注数据,只通过matching the blanks方法来训练模型(句子中的实体被特殊字符[BLANK]替换,其目标是使得关系表示相似,如果该文本关系表述中包含相同的实体对)。

Overview

Task definition

本文的目标是学习从文本关系表述到向量关系表示之间的一个映射关系。给定一个序列表示,其中为其特殊的开始和结束表示符。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值