树莓派3B+新麦克风调试

     最近闲来无事,就想说捣鼓一下买来快吃灰一年的树莓派。在某宝花了30多大洋给树莓派装饰了一下。新买的东西总得试一下开始试试。。。

     买了外壳、摄像头和麦克风。摄像头网上随便找个教程能拍照就OK了,接下来试下麦克风。

    我买的麦克风长这样的,是免驱的,即插即用,方便快捷。网上也有教大家如何看麦克风驱动是否存在的命令这里我就不多收了

树莓派专用麦克风 USB接口 raspberry pi可用

执行sudo arecord -D "plughw:1,0" -d 20 temp.wav录音20秒,之后生成一个文件temp.wav。这个音频文件需要用到播放器才能播放,所以安装omxplayer:sudo apt-get install omxplayer。安装完以后就可以播放录音文件了omxplayer -o local temp.wav就能播放本文件夹下的音频文件temp.wav。当你插上耳机认真听的时候你是很难听清的,可以说录音效果极其不佳,噪音特别大。因为你还需要再次配置一下麦克风。

调节麦克风就比较简单了,看如下教程:

终端输入:alsamixer

就会出来如下界面,接下来按F6选择USB设备。

接下来按F5,选择ALL,就会出现下图:

这个时候按键盘的↑调节CAPTURE应该是麦克风的增益,也可以按↓调小,将这个值调到最大如下图.

这个时候按ESC退出就可以了在执行录音的命令,听一下效果比没调节的时候好很多。

参考:

https://jingyan.baidu.com/article/fdbd4277a447ebb89e3f48ca.html

https://www.jianshu.com/p/2e8eed5070ed

### 树莓派麦克风阵列声源定位实现方法 #### 使用FFT算法进行简单声源定位 对于基本的声源定位应用,可以通过快速傅里叶变换(FFT)来估计声音的方向。这种方法适用于二维平面上的声音方向检测,能够提供单一角度作为输出结果[^1]。 ```python import numpy as np from scipy.fft import fft, fftfreq def calculate_direction(signal_left, signal_right, sample_rate): N = len(signal_left) yf_left = fft(signal_left) xf = fftfreq(N, 1 / sample_rate)[:N//2] magnitude_diff = abs(yf_left[:N//2]) - abs(fft(signal_right)[:N//2]) # 进行进一步处理以获得方向信息... ``` 然而,这种基于FFT的方法存在局限性,比如无法实时追踪多个移动中的声源,并且计算效率较低[^2]。 #### ODAS库的应用 为了克服上述限制并提升性能,建议采用ODAS开源项目所提供的工具集。该方案不仅提高了定位准确性还增加了对三维空间的支持以及多目标跟踪能力。具体来说: - **安装依赖项** ```bash sudo apt-get update && sudo apt-get install libasound2-dev portaudio19-dev python3-pyaudio git cmake build-essential ``` - **获取ODAS源码** ```bash cd ~/ git clone https://github.com/introlab/odas.git odas_lite mkdir ~/odas_lite/build && cd $_ cmake .. make -j$(nproc) ``` - **配置与运行** 修改`~/odas_lite/live/etc/odaslive.cfg`文件设置参数后启动服务端程序: ```bash ~/odas_lite/bin/odaslive & ``` 随后,在客户端编写Python脚本连接至服务器接收数据流完成后续分析工作. #### ReSpeaker四麦克风圆环模块实例 当选用ReSpeaker这类特定硬件平台时,则可参照官方文档指导完成接线及驱动加载操作;之后利用其内置固件特性简化开发流程。例如,通过测量不同位置传感器间传播延迟差异来进行精确定位[^3]: ```python import pyaudio import struct import math CHUNK_SIZE = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 4 RATE = 16000 p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK_SIZE) while True: data = stream.read(CHUNK_SIZE) samples = list(struct.unpack(str(4 * CHUNK_SIZE) + 'h', data)) # 对采集到的数据做预处理... stream.stop_stream() stream.close() p.terminate() ``` 此代码片段展示了如何从四个通道同步录音进而为下一步的时间差(TDOA)计算准备素材。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_38042083

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值