卷积神经网络(多输入通道与多输出通道)

多输入通道:当输入数据含有多个通道时,我们需要构造一个输入通道数与输入数据通道数相同的卷积核,从而能够与含有多个输入数据做互相关运算。
例如:
在这里插入图片描述
阴影部分第一个元素及其计算所使用的输入和核数组元素:
在这里插入图片描述
多输出通道:通过1乘1卷积核来调整网络层之间的通道数,并控制模型的复杂度。
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值