说在前面
这篇博客真的是针对新手的一篇Tarjan求图的强连通分量的博文,因为博主自身刚刚学习,也顺便写个博文记录一下,所以正好体现了新手如何去逐步了解Tarjan算法。
一、基础知识
在去学习了解Tarjan算法之前,我们首先要了解什么是强连通以及什么是强连通分量。(没有术语,都是大白话)
强连通
对于一个图中的某两个点,如果其相互可达,则说这两个点是强连通的。举例来说就是有一个图中有A、B两个顶点,可以找到一条路径由A到达B,也可以找到一条路径由B到达A,那么就说A点和B点是强连通的。
强连通图
为了介绍强连通分量,这里再引入一个强连通图的概念。对于一个图来说,任意两个点都是强连通的,那么该图为一个强连通图。
强连通分量
非强连通图的极大强连通子图,称为强连通分量。强连通图上述已经介绍过了,极大强连通子图的意思就是,这个图中的所有可能的强连通的点都包含在子图中了,再加入会使其不能再保证强连通性。"极大"这个概念学计算机的应该经常会遇到。
二、Tarjan模板代码解释
由于我自己对于Tarjan算法也是初学,一开始也找不到一个很好的博客可以很详细的进行解释,下面我也就是分享一种学习的思路吧,可以帮你更快的掌握。
首先,对于Tarjan算法,有一些细节你可以先不要考虑,就是dfn和low具体的工作方式。在初学的时候,你可以暂时将对dfn数组和low数组的认识停留在这样一个层面上:
- 如果dfn[i] == low[i],那么意味着此时i是图中某一个强连通分量的根,现在只需要按顺序将栈中的顶点编号pop出来,直到 i 即可。
- dfn[i]就是一个时间戳,用来标记顶点,low[i]就是一个用来标记强连通分量的数组。
虽然现在初学的我并没有很好的理解dfn数组和low数组的原理,但我现在自己敲Tarjan的代码应该没有问题了,我觉得学习过程也应该是这样,会敲这种代码之后,再多做几道相应的题,自然就学会了。
下面我给出自己敲的Tarjan模板题代码,其中附了一些大模块的注释,帮助初学者很好的记忆和理解:
#include <iostream>
#include <vector>
#include <stack>
#include <algorithm>
#define MAXN 105
using namespace std;
int n, m;
vector<int> edges[MAXN]; // 用来存图
// Tarjan
int dfn[MAXN], low[MAXN];
int index = 0;
stack<int> s;
bool vis[MAXN];
void tarjan(int u) {
dfn[u] = low[u] = ++index; // 记录时间戳
s.push(u);
vis[u] = true;
// 以下这部分是在遍历顶点u的出边
int size = edges[u].size();
for (int i=0;i<size;i++) {
int v = edges[u][i];
if (!dfn[v]) { // 如果顶点v第一次被搜索
tarjan(v);
low[u] = min(low[u], low[v]);
}
else if (vis[v]) { // 如果顶点v还在栈中
low[u] = min(low[u], dfn[v]);
}
// 剩余一种情况是顶点v已经被作为某个强连通分量中的顶点输出
}
if (low[u] == dfn[u]) { // 找到某个强连通分量的根
int v;
do {
v = s.top(); s.pop();
vis[v] = false;
cout << v << " ";
} while (u != v);
cout << endl;
}
}
int main() {
while (cin >> n >> m) {
if (!n && !m) break;
int u, v;
for (int i=1;i<=m;i++) {
cin >> u >> v;
edges[u].push_back(v);
}
// 为了保证每个点都被搜索
for (int i=1;i<=n;i++) {
if (!dfn[i])
tarjan(i);
}
}
return 0;
}
如果有问题,欢迎大家指正!!!