【每日一题】LeetCode. 128. 最长连续序列

每日一题,防止痴呆 = =

一、题目大意

给定一个未排序的整数数组,找出最长连续序列的长度。

要求算法的时间复杂度为 O(n)。
在这里插入图片描述
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-consecutive-sequence

二、题目思路以及AC代码

最开始看到这道题还以为是最长上升子序列呢 = =,仔细一看,原来不是。

思路一

先说一下我自己想到的思路,最后发现还是比官解复杂一点,但感觉出发点是一样的。题目要求求数组中连续的序列,那么我们就可以在遍历到一个数x的时候,查看x向右可以最远到哪个数,x向左最远可以到哪个数,这样的话,我们只要枚举这些数,然后找到最长的序列即可,其中我们在查看某个数是否在数组中,可以提前用unorder_map去保存。

当我们在枚举这些数列的时候,其实有点并查集的意思,如果我遍历x的时候,发现y在x的连续数列中,那么x肯定也在y的连续数列中,那么这两个连续数列就没必要遍历两次了,所以我又采用了一个unordered_map来记录该数是否已经遍历过了,这样整体每个数只会被遍历一次,则复杂度为O(n)。

思路二

做完之后,我去看了看题解的思路,和我的思路类似,感觉是又优化了一次。我的思路中,每次需要找一个数左右两边的边界,而题解中将该数自身作为左边界,只去找右边界,而这样也不需要另外一个unordered_map来记录是否遍历过了,因为如果当前数x在数组中存在x-1,则它就没必要遍历,因为遍历到x-1的时候,肯定会遍历它,所以在空间上减少了一个unordered_map的空间,在时间上感觉两种方法是差不多的。

AC代码

思路一:

class Solution {
public:
    int longestConsecutive(vector<int>& nums) {
        unordered_map<int, bool> contains;
        unordered_map<int, bool> vis;

        int n_size = nums.size();
        if (!n_size) return 0;
        for (int i=0;i<n_size;i++) {
            contains[nums[i]] = true;
        }

        int res = -1;
        for (int i=0;i<n_size;i++) {
            if (vis[nums[i]]) continue;

            int cnt = 1;
            int num = nums[i] - 1;
            // 向左找
            while (contains[num]) {
                vis[num] = true;
                cnt++;
                num--;
            }
            // 向右找
            num = nums[i] + 1;
            while (contains[num]) {
                vis[num] = true;
                cnt++;
                num++;
            }
            
            res = max(res, cnt);
        }

        return res;
    }
};

思路二:

class Solution {
public:
    int longestConsecutive(vector<int>& nums) {
        unordered_map<int, bool> contains;

        int n_size = nums.size();
        if (!n_size) return 0;
        for (int i=0;i<n_size;i++) {
            contains[nums[i]] = true;
        }

        int res = -1;
        for (int i=0;i<n_size;i++) {
            if (contains[nums[i]-1]) continue;

            int cnt = 1;
            int num = nums[i] + 1;
            while (contains[num]) {
                cnt++;
                num++;
            }
            
            res = max(res, cnt);
        }

        return res;
    }
};

如果有问题,欢迎大家指正!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值