每日一题,防止痴呆 = =
一、题目大意
给定一个未排序的整数数组,找出最长连续序列的长度。
要求算法的时间复杂度为 O(n)。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-consecutive-sequence
二、题目思路以及AC代码
最开始看到这道题还以为是最长上升子序列呢 = =,仔细一看,原来不是。
思路一
先说一下我自己想到的思路,最后发现还是比官解复杂一点,但感觉出发点是一样的。题目要求求数组中连续的序列,那么我们就可以在遍历到一个数x的时候,查看x向右可以最远到哪个数,x向左最远可以到哪个数,这样的话,我们只要枚举这些数,然后找到最长的序列即可,其中我们在查看某个数是否在数组中,可以提前用unorder_map去保存。
当我们在枚举这些数列的时候,其实有点并查集的意思,如果我遍历x的时候,发现y在x的连续数列中,那么x肯定也在y的连续数列中,那么这两个连续数列就没必要遍历两次了,所以我又采用了一个unordered_map来记录该数是否已经遍历过了,这样整体每个数只会被遍历一次,则复杂度为O(n)。
思路二
做完之后,我去看了看题解的思路,和我的思路类似,感觉是又优化了一次。我的思路中,每次需要找一个数左右两边的边界,而题解中将该数自身作为左边界,只去找右边界,而这样也不需要另外一个unordered_map来记录是否遍历过了,因为如果当前数x在数组中存在x-1,则它就没必要遍历,因为遍历到x-1的时候,肯定会遍历它,所以在空间上减少了一个unordered_map的空间,在时间上感觉两种方法是差不多的。
AC代码
思路一:
class Solution {
public:
int longestConsecutive(vector<int>& nums) {
unordered_map<int, bool> contains;
unordered_map<int, bool> vis;
int n_size = nums.size();
if (!n_size) return 0;
for (int i=0;i<n_size;i++) {
contains[nums[i]] = true;
}
int res = -1;
for (int i=0;i<n_size;i++) {
if (vis[nums[i]]) continue;
int cnt = 1;
int num = nums[i] - 1;
// 向左找
while (contains[num]) {
vis[num] = true;
cnt++;
num--;
}
// 向右找
num = nums[i] + 1;
while (contains[num]) {
vis[num] = true;
cnt++;
num++;
}
res = max(res, cnt);
}
return res;
}
};
思路二:
class Solution {
public:
int longestConsecutive(vector<int>& nums) {
unordered_map<int, bool> contains;
int n_size = nums.size();
if (!n_size) return 0;
for (int i=0;i<n_size;i++) {
contains[nums[i]] = true;
}
int res = -1;
for (int i=0;i<n_size;i++) {
if (contains[nums[i]-1]) continue;
int cnt = 1;
int num = nums[i] + 1;
while (contains[num]) {
cnt++;
num++;
}
res = max(res, cnt);
}
return res;
}
};
如果有问题,欢迎大家指正!!!