每日一题,防止痴呆 = =
一、题目大意
给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/word-break
二、题目思路以及AC代码
思路
这道题的思路感觉挺常规的,是递进式的。
一阶段:递归
首先容易想到的是递归,我们可以直接递归来做,思路很清晰。就是首先用unordered_map存储字典,然后建立递归函数can_break(s),其中,每个递归函数中,找到第一个和字典中元素匹配的元素,然后将去掉这个元素后的子串再继续递归,最后就可以遍历所有的情况,从而求得结果。
当然,这个方法在这里会超时,毕竟有太多不必要的计算了。
二阶段:动态规划
自然,我们递归超时了,就可以考虑用动态规划来进行求解。我们设 dp[i] 表示字符串的前 i 个字符,是否可以拆解。那么我们进行递推的时候,如果要求解 dp[i],那么我们只需要遍历 dp[0] ~ dp[i - 1],如果其中 dp[j] 为 true,也就是说前 j 个字符已经是可拆的了,那么我们只要保证 j + 1 ~ i 这个字符串在字典中,那么前 i 个字符就都是可拆的了,这样就有了递推关系。时间复杂度是O(N2),相比于前一种已经减少很多了。
三阶段:优化的动态规划
到了上面的方法就是结束了吗?当然不是,我们还能进行一些常数上的加速。我们上面需要在每次求解 dp[i] 的时候,遍历所有的 0 ~ i - 1,然而我们可以主动一点,我们在遍历到 i 的时候,下一步不是去遍历 0 ~ i - 1,而是去遍历 wordList,去求 dp[i + word.size() - 1],这样就又可以省去一些重复遍历 dp中元素的时间,比二阶段的方法更进一步。
AC代码
递归解法
class Solution {
private:
map<string, bool> wordMap;
public:
bool can_break(string s) {
if (s.empty()) return true;
int s_len = s.length();
string temp = "";
for (int i=0;i<s_len;i++) {
temp += s[i];
if (wordMap[temp] && can_break(s.substr(i + 1))) return true;
}
return false;
}
bool wordBreak(string s, vector<string>& wordDict) {
for (string word: wordDict) {
wordMap[word] = true;
}
return can_break(s);
}
};
common 动态规划解法
class Solution {
private:
unordered_map<string, bool> wordMap;
public:
bool wordBreak(string s, vector<string>& wordDict) {
for (string word: wordDict) {
wordMap[word] = true;
}
int s_len = s.length();
bool dp[s_len + 1];
for (int i=0;i<=s_len;i++) dp[i] = false;
dp[0] = true;
for (int i=1;i<=s_len;i++) {
for (int j=0;j<i;j++) {
if (dp[j] && wordMap[s.substr(j, i - j)]) {
dp[i] = true;
break;
}
}
}
return dp[s_len];
}
};
优化动态规划解法
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
int s_len = s.length();
bool dp[s_len + 1];
for (int i=0;i<=s_len;i++) dp[i] = false;
dp[0] = true;
for (int i=1;i<=s_len;i++) {
for (string word: wordDict) {
if (dp[i-1] && i + word.length() - 1 <= s_len && word == s.substr(i - 1, word.length())) {
dp[i + word.length() - 1] = true;
}
}
}
return dp[s_len];
}
};
如果有问题,欢迎大家指正!!!