【每日一题】LeetCode. 139. 单词拆分

每日一题,防止痴呆 = =

一、题目大意

给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。
在这里插入图片描述
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/word-break

二、题目思路以及AC代码

思路

这道题的思路感觉挺常规的,是递进式的。

一阶段:递归

首先容易想到的是递归,我们可以直接递归来做,思路很清晰。就是首先用unordered_map存储字典,然后建立递归函数can_break(s),其中,每个递归函数中,找到第一个和字典中元素匹配的元素,然后将去掉这个元素后的子串再继续递归,最后就可以遍历所有的情况,从而求得结果。

当然,这个方法在这里会超时,毕竟有太多不必要的计算了。

二阶段:动态规划

自然,我们递归超时了,就可以考虑用动态规划来进行求解。我们设 dp[i] 表示字符串的前 i 个字符,是否可以拆解。那么我们进行递推的时候,如果要求解 dp[i],那么我们只需要遍历 dp[0] ~ dp[i - 1],如果其中 dp[j] 为 true,也就是说前 j 个字符已经是可拆的了,那么我们只要保证 j + 1 ~ i 这个字符串在字典中,那么前 i 个字符就都是可拆的了,这样就有了递推关系。时间复杂度是O(N2),相比于前一种已经减少很多了。

三阶段:优化的动态规划

到了上面的方法就是结束了吗?当然不是,我们还能进行一些常数上的加速。我们上面需要在每次求解 dp[i] 的时候,遍历所有的 0 ~ i - 1,然而我们可以主动一点,我们在遍历到 i 的时候,下一步不是去遍历 0 ~ i - 1,而是去遍历 wordList,去求 dp[i + word.size() - 1],这样就又可以省去一些重复遍历 dp中元素的时间,比二阶段的方法更进一步。

AC代码

递归解法

class Solution {
private:
    map<string, bool> wordMap;
public:
    bool can_break(string s) {
        if (s.empty()) return true;

        int s_len = s.length();
        string temp = "";
        for (int i=0;i<s_len;i++) {
            temp += s[i];
            if (wordMap[temp] && can_break(s.substr(i + 1))) return true;
        }

        return false;
    }

    bool wordBreak(string s, vector<string>& wordDict) {
        for (string word: wordDict) {
            wordMap[word] = true;
        }

        return can_break(s);
    }
};

common 动态规划解法

class Solution {
private:
    unordered_map<string, bool> wordMap;
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        for (string word: wordDict) {
            wordMap[word] = true;
        }

        int s_len = s.length();
        bool dp[s_len + 1];
        for (int i=0;i<=s_len;i++) dp[i] = false;
        dp[0] = true;

        for (int i=1;i<=s_len;i++) {
            for (int j=0;j<i;j++) {
                if (dp[j] && wordMap[s.substr(j, i - j)]) {
                    dp[i] = true;
                    break;
                }
            }
        }

        return dp[s_len];
    }
};

优化动态规划解法

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        int s_len = s.length();
        bool dp[s_len + 1];
        for (int i=0;i<=s_len;i++) dp[i] = false;
        dp[0] = true;

        for (int i=1;i<=s_len;i++) {
            for (string word: wordDict) {
                if (dp[i-1] && i + word.length() - 1 <= s_len && word == s.substr(i - 1, word.length())) {
                    dp[i + word.length() - 1] = true;
                }
            }
        }

        return dp[s_len];
    }
};

如果有问题,欢迎大家指正!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值