从基本原理到梯度下降,看梯度下降如何运用到神经网络里的

本文介绍了神经网络的基础单元——神经元,包括输入、权重、偏置和激活函数。接着讲解了梯度下降算法,阐述了如何通过梯度下降找到损失函数的最小值,并解释了其在神经网络训练过程中的应用,揭示了神经网络训练与梯度下降本质的一致性。
摘要由CSDN通过智能技术生成

搭建基本模块——神经元

在说神经网络之前,我们讨论一下神经元(Neurons),它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。比如一个2输入神经元的例子:
在这里插入图片描述在这个神经元中,输入总共经历了3步数学运算,

先将两个输入乘以权重(weight):

x1→x1 × w1
x2→x2 × w2

把两个结果想加,再加上一个偏置(bias):

(x1 × w1)+(x2 × w2)+ b

最后将它们经过激活函数(activation function)处理得到输出:

y = f(x1 × w1 + x2 × w2 + b)

激活函数的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是sigmoid函数:
在这里插入图片描述sigmoid函数的输出介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。

举个例子,上面神经元里的权重和偏置取如下数值:

w=[0,1]
b = 4

w=[0,1]是w1=0、w2=1的向量形式写法。给神经元一个输入x=[2,3],可以用向量点积的形式把神经元的输出计算出来:

w·x+b =(x1 × w1)+(x2 × w2)+ b = 0×2+1×3+4=7
y=f(w⋅X+b)=f(7)=0.999

以上步骤的Python代码是:

import numpy as np

def sigmoid(x):
  # Our activation function: f(x) = 1 / (1 + e^(-x))
  return 1 / (1 + np.exp(-x))

class Neuron:
  def __init__(self, weights, bias):
    self.weights = weights
    self.bias = bias

  def feedforward(self, inputs):
    # Weight inputs, add bias, then use the activation function
    total = np.dot(self.weights, inputs) + self.bias
    return sigmoid(total)

weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4                   # b = 4
n = Neuron(weights, bias)

x = np.array([2, 3])       # x1 = 2, x2 = 3
print(n.feedforward(x))    # 0.9990889488055994

我们在代码中调用了一个强大的Python数学函数库NumPy

梯度下降算法

每一个机器学习模型都有一个损失函数,学习的目的,就是将损失函数最小化。损失函数y是一个关于待求参数x的函数,即:[公式]

然而,并非所有函数都能一下子就找到最小值。

所以,需要使用梯度下降法。

梯度下降法的过程(损失函数以下面这个一元函数y=f(x)为例):
在这里插入图片描述

  1. 随机初始化待求参数x的初始值,比如 x ←
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值