搭建基本模块——神经元
在说神经网络之前,我们讨论一下神经元(Neurons),它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。比如一个2输入神经元的例子:
在这个神经元中,输入总共经历了3步数学运算,
先将两个输入乘以权重(weight):
x1→x1 × w1
x2→x2 × w2
把两个结果想加,再加上一个偏置(bias):
(x1 × w1)+(x2 × w2)+ b
最后将它们经过激活函数(activation function)处理得到输出:
y = f(x1 × w1 + x2 × w2 + b)
激活函数的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是sigmoid函数:
sigmoid函数的输出介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。
举个例子,上面神经元里的权重和偏置取如下数值:
w=[0,1]
b = 4
w=[0,1]是w1=0、w2=1的向量形式写法。给神经元一个输入x=[2,3],可以用向量点积的形式把神经元的输出计算出来:
w·x+b =(x1 × w1)+(x2 × w2)+ b = 0×2+1×3+4=7
y=f(w⋅X+b)=f(7)=0.999
以上步骤的Python代码是:
import numpy as np
def sigmoid(x):
# Our activation function: f(x) = 1 / (1 + e^(-x))
return 1 / (1 + np.exp(-x))
class Neuron:
def __init__(self, weights, bias):
self.weights = weights
self.bias = bias
def feedforward(self, inputs):
# Weight inputs, add bias, then use the activation function
total = np.dot(self.weights, inputs) + self.bias
return sigmoid(total)
weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4 # b = 4
n = Neuron(weights, bias)
x = np.array([2, 3]) # x1 = 2, x2 = 3
print(n.feedforward(x)) # 0.9990889488055994
我们在代码中调用了一个强大的Python数学函数库NumPy。
梯度下降算法
每一个机器学习模型都有一个损失函数,学习的目的,就是将损失函数最小化。损失函数y是一个关于待求参数x的函数,即:[公式]
然而,并非所有函数都能一下子就找到最小值。
所以,需要使用梯度下降法。
梯度下降法的过程(损失函数以下面这个一元函数y=f(x)为例):
- 随机初始化待求参数x的初始值,比如 x ←