题目背景
NOIP2015 提高组 Day1 T3
题目描述
牛牛最近迷上了一种叫斗地主的扑克游戏。斗地主是一种使用黑桃、红心、梅花、方片的A到K加上大小王的共54张牌来进行的扑克牌游戏。在斗地主中,牌的大小关系根据牌的数码表示如下:3<4<5<6<7<8<9<10<J<Q<K<A<2<小王<大王,而花色并不对牌的大小产生影响。每一局游戏中,一副手牌由 n 张牌组成。游戏者每次可以根据规定的牌型进行出牌,首先打光自己的手牌一方取得游戏的胜利。
现在,牛牛只想知道,对于自己的若干组手牌,分别最少需要多少次出牌可以将它们打光。请你帮他解决这个问题。
需要注意的是,本题中游戏者每次可以出手的牌型与一般的斗地主相似而略有不同。
具体规则如下:
输入格式
第一行包含用空格隔开的 2 个正整数 T ,n ,表示手牌的组数以及每组手牌的张数。
接下来 T 组数据,每组数据 n 行,每行一个非负整数对 ai,bi ,表示一张牌,其中 ai 表示牌的数码,bi 表示牌的花色,中间用空格隔开。特别的,我们用 1 来表示数码 A,11 表示数码 J,12 表示数码 Q ,13 表示数码 K ;黑桃、红心、梅花、方片分别用 1~4 来表示;小王的表示方法为 0 1,大王的表示方法为 0 2 。
输出格式
输出共 T 行,每行一个整数,表示打光第 i 组手牌的最少次数。
样例数据 1
输入
1 8
7 4
8 4
9 1
10 4
11 1
5 1
1 4
1 1
输出
3
样例数据 2
输入
1 17
12 3
4 3
2 3
5 4
10 2
3 3
12 2
0 1
1 3
10 1
6 2
12 1
11 3
5 2
12 4
2 2
7 2
输出
6
备注
【样例1说明】
共有 1 组手牌,包含 8 张牌:方片7,方片8,黑桃9,方片10,黑桃J,黑桃5,方片A以及黑桃A。可以通过打单顺子(方片7,方片8,黑桃9,方片10,黑桃J),单张牌(黑桃5)以及对子牌(黑桃A以及方片A)在3次内打光。
【数据范围】
对于不同的测试点,我们约定手牌组数 T 与张数 n 的规模如下:
数据保证:所有的手牌都是随机生成的。
解析:
大模拟?不不不,普通搜索就行了。
考虑没有顺子的情况,那么就可以贪心的进行出牌,出牌优先级为顺子>四带二>四带一>三带二>三带一>对子>单牌。因为出一次优先级大的组合一定有多个优先级小的组合组成的,所以贪心一定是是对的。
但是有了顺子后,就不能证明贪心是对的,就直接搜索顺子是哪些,然后更新答案,必要的剪枝是肯定要加的。
代码:
#include <bits/stdc++.h>
using namespace std;
const int card[5]={0,5,3,2};
const int Max=16;
int n,m,ans,x,y,t;
int a[Max],sum[Max];
inline int calc()
{
int tot=0;
memset(sum,0,sizeof(sum));
for(int i=0;i<=14;i++) if(i^1) sum[a[i]]++;
while(sum[4]&&sum[2]>=2) tot++,sum[4]--,sum[2]-=2;
while(sum[4]&&sum[1]>=2) tot++,sum[4]--,sum[1]-=2;
while(sum[3]&&sum[2]) tot++,sum[3]--,sum[2]--;
while(sum[3]&&sum[1]) tot++,sum[3]--,sum[1]--;
return tot+sum[1]+sum[2]+sum[3]+sum[4];
}
inline void dfs(int step)
{
if(step>=ans) return;
ans=min(ans,step+calc());
for(int same=3;same;same--)
for(int i=3;i<=13;i++)
{
int j=i;
while(a[j]>=same&&j<=14) j++;j--;
if(j-i+1<card[same]) continue;
for(int k=i;k<=i+card[same]-2;k++) a[k]-=same;
for(int k=i+card[same]-1;k<=j;k++) a[k]-=same,dfs(step+1);
for(int k=i;k<=j;k++) a[k]+=same;
}
}
int main()
{
scanf("%d%d",&t,&n);
while(t--)
{
memset(a,0,sizeof(a)),ans=n;
for(int i=1;i<=n;i++) scanf("%d%d",&x,&y),x=x==1?14:x ,a[x]++;
dfs(0),printf("%d\n",ans);
}
return 0;
}