MATLAB实现工业PCB电路板缺陷识别和检测

PCB(Printed Circuit Board印刷电路板)是电子产品中众多电子元器件的承载体,它为各电子元器件的秩序连接提供了可能,PCB已成为现代电子产品的核心部分。随着现代电子工业迅猛发展,电子技术不断革新,PCB密集度不断增大,层级越来越多,生产中因焊接缺陷的等各种原因,导致电路板的合格率降低影响整机质量的事故屡见不鲜。随着印刷电路板的精度、集成度、复杂度、以及数量的不断提高,PCB板的缺陷检测已成为整个电子行业中重要的检测内容。其中人工目测等传统的PCB缺陷检测技术因诸多弊端已经不能适应现代工业生产水平的要求,因此开发和应用新的检测方法已显得尤为重要。

根据PCB板缺陷产生的原因和目前惯用的缺陷检测方法及其不足,发展出了符合现代工业要求的PCB一般缺陷检测方法包括:自动光学检测技术(AOI)、机器视觉检测技术(MVI)、计算机视觉检测技术(AVI)。

PCB板检测的大概流程如下:首先存储一个标准PCB板图像作为良好板材的参考标准,然后将待检测的PCB板图像进行处理,比较与标准PCB图像的差异,根据差异的情况来判断缺陷类型。

拓展学习:LabVIEW实现PCB电路板元器件匹配定位(实战篇—7)

  • 图像预处理

对于标准PCB板的图像处理包括:灰度化,二值化。而对待检测图像的处理则包括:

灰度化,滤波,除去黑点(干扰点)等。二者最终都会得到各自的二值图像。

  • 图像匹配

图像匹配是对不同时间、不同传感器或者不同视角下的同一场景的两幅或者多幅图像进行配准的过程。常用的图像配准方法有基于特征的图像配准和基于互信息的配准。

选择正确样本图和待检测图,如下图所示:

点击缺陷检测和缺陷标注完成对PCB板图像的检测,如下图所示:

当待测图像存在与标准图像存在角度差时,我们可以在进行互相关系数计算前,先进性旋转,求出在多个角度下的最大相关系数,则该相关系数时的角度即为两幅图像的角度差,对待测图像进行旋转,然后根据最大相关系数进行旋转后的待测图像与标准图像进行匹配。

项目资源下载请参见: MATLAB实现工业PCB电路板缺陷识别和检测【图像处理实战】

### 使用MATLAB进行基于深度学习的PCB缺陷检测 #### 方法概述 对于印刷电路板PCB)的自动缺陷检测,可以采用深度学习中的目标检测算法来识别定位缺陷区域。一种有效的方式是在MATLAB环境中部署YOLO(You Only Look Once)模型来进行实时高效的缺陷检测[^2]。 TDD-Net是一种专门用于PCB表面缺陷检测的网络架构,在此框架下,通过优化锚框尺寸并结合多尺度金字塔网络(FPN),能够显著提升对细微缺陷的检出率。实验表明这种方法可以在特定的数据集上达到98.90%的平均精度均值(mAP)[^3]。 #### MATLAB代码实现 下面是一个简单的例子展示如何利用预训练好的YOLOv3模型在MATLAB中加载图像并对可能存在的PCB缺陷进行预测: ```matlab % 加载YOLO v3对象检测器 detector = yolov3ObjectDetector('yolov3-spp', 'pcbs'); % 读取待测图片文件路径 imgPath = fullfile(matlabroot,'toolbox','vision','supportpackages','imageprocessingtoolbox','samples',... 'pcb_defect.jpg'); I = imread(imgPath); % 执行物体检测 [bboxes,scores,labels] = detect(detector,I); % 显示带有边界框的结果图 detectedImg = insertObjectAnnotation(I,'rectangle',bboxes,string(labels)); imshow(detectedImg); title('Detected PCB Defects') ``` 上述代码片段展示了基本的工作流程:首先是初始化一个YOLOv3探测器实例;接着是从指定位置加载一张测试用的PCB照片;之后调用`detect()`函数执行实际的目标检测操作;最后将标注有矩形边界的检测结果呈现在屏幕上。 需要注意的是,这里使用的`'yolov3-spp'`参数代表了一个经过特别调整以适用于PCB场景下的YOLO版本,而`'pcbs'`则是指定了对应于此类应用领域内的类别标签集合。具体的模型权重以及配置文件应当依据实际情况准备或训练得到。 #### 数据处理与增强 考虑到小规模数据集可能导致过拟合现象的发生,因此建议采取适当措施扩充可用样本数量。这可以通过随机翻转、旋转等方式生成额外变体来完成。此外,还可以考虑实施在线困难样本挖掘(OHEM),即优先选取那些难以分类的例子参与迭代更新过程,从而进一步改善泛化性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不脱发的程序猿

亲,赏包辣条吧~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值