第一章 概率论的基本概念
一、随机事件、古典与几何概型
(一)随机事件和样本时间
- 样本空间Ω :随机实验的所有可能结果组成的集合称为样本空间。
- 样本点w:样本空间元素,即随机试验的每一可能结果称为样本点。
- 随机事件:样本空间Ω的子集,通常用A,B,C表示。
- 事件发生:当且仅当这一子集中的一个样本点出现,称这一事件发生。
- 特殊事件:(1)不可能事件 (2)必然事件
(二)概率的古典概型
随机试验E具有以下两个特征,称E为古典型试验。
(1)随机事件只有有限个样本点(有限性);
(2)每一基本事件的出现的可能性是相等的(等可能性)
若事件A含有k个样本,则事件A的概率为
事件A所含样本点的个数 K
P(A) = —————————————————————————— = ——
Ω 中所有样本点的个数 n
情况少:穷举法;情况多:排列/组合
排列有序,组合无序
例:
从5人中选2人当班委 5C2 = 5*4 / 2*1 = 10;
从5人中选2人当正副班委 5C2 * 2! = 5P2 = 20
控球问题
例:
一个盒中由3个黄球,7个白球,现按下列方式摸球试求下列事件的概率:
1. A = {一次取2个,取出的球中有1个黄球,1个白球};
P(A) = 3C1 * 7C1 / 10C2 = 7/15;
2. B = {一次取2个,取出的球中至少有一个黄球};
P(B) = (3C1 * 7C1 + 3C2) / 10C2 = 8/15;
或者 P(B) = 1 - (7C2 / 10C2) = 1 - 21/45 = 8/15;
3. C = {一次取1个,取后不放回,取出的球中有一个黄球,1个白球}
P(C) = (3C1 / 10C1) * (7C1 / 9C1) * 2! = 7/15;
4. D = {一次取1个,取后放回,取出的球中有1个黄球,一个白球};
P(D) = (3C1 / 10C1) * (7C1 / 10C1) * 2! = 21/50;
控球方式:
一次取k个:组合,无顺序;
每次取1个:有顺序 --> 1. 不放回:Ω减少; 2. 放回:Ω不变[独立]
分房问题
将3人分配到4间房的每一间中,若每人被分配到这4间房的每一间房中的概率都相同,求下列事件的概率:
1. A = [第一、二、三号房中各有1人}
P(A) = 3P3 / 4^3 = 3/32;
2. B = {恰有2个房间中各有1人}
P(B) = 4P3 / 4^3 = 3/8;
3. C = {指定房间中恰好有1人}
P(C) = (1C3 * 3C1 * 3C1) / 4^3 = 27/64
分房操作:
将人分到房间中;
指定不用选,恰要选;
房间中人数要求。
取样问题
从标号为1,2,.....,6 这6个球中取3个球,求下列事件的概率:
A = {含有2号球};
P(A) = 5C2 / 6C3 = 1/2
B = {不含3号球};
P(B) = 5C3 / 6C3 = 1/2
C = {含有2号球且不含3号球};
P(C) = 4C2 / 6C3 = 3/10
D = {含2号或含3号球}
P(D) = (5C2 + 5C2 - 4C1) / 6C3 = 4/5
或
P(D) = 1 - (4C3 / 6C3) = 1 - 4/20 = 4/5
E = {最大号码为4}
P(E) = 3C2 / 6C3 = 3/20
取样问题:
含与不含;
或 和 且;
最大与最小;
概率的几何概型
几何型试验:
结果为无限个;
每个结果出现是等可能的。
L(A)
P(A) = ——————
L(B)
其中L(Ω)与L(A) 分别为Ω与A的几何度量(长度,面积,体积)。
例、随机的向半圆0<y<(2ax - x2)(1/2) (a为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x轴的夹角小于(兀 / 4)的概率为:
P(A) = N(A) / N(Ω) = ((1/2a ^ 2) + (1/4兀 a ^ 2) ) / (1/2兀 a ^ 2) = (1/兀 + 1/2)