概率论与数学统计(一)

本文介绍了概率论的基本概念,包括随机事件、样本空间和概率的古典概型。通过控球问题、分房问题和取样问题举例说明了古典概型的计算方法,如组合与排列的应用。同时,讲解了概率的几何概型,强调在无限等可能结果中的概率计算。此外,还探讨了如何运用这些概念解决实际问题,如从球中取样和人员分配问题。
摘要由CSDN通过智能技术生成

一、随机事件、古典与几何概型

(一)随机事件和样本时间

  1. 样本空间Ω :随机实验的所有可能结果组成的集合称为样本空间。
  2. 样本点w:样本空间元素,即随机试验的每一可能结果称为样本点。
  3. 随机事件:样本空间Ω的子集,通常用A,B,C表示。
  4. 事件发生:当且仅当这一子集中的一个样本点出现,称这一事件发生。
  5. 特殊事件:(1)不可能事件 (2)必然事件

(二)概率的古典概型

随机试验E具有以下两个特征,称E为古典型试验。
(1)随机事件只有有限个样本点(有限性);
(2)每一基本事件的出现的可能性是相等的(等可能性)
若事件A含有k个样本,则事件A的概率为

	      事件A所含样本点的个数         K
P(A) = —————————————————————————— =  ——
         Ω 中所有样本点的个数           n

情况少:穷举法;情况多:排列/组合

排列有序,组合无序

例:
从5人中选2人当班委      5C2 = 5*4 / 2*1 = 10;5人中选2人当正副班委  5C2 * 2! = 5P2 = 20
	

控球问题

例:
一个盒中由3个黄球,7个白球,现按下列方式摸球试求下列事件的概率:
1. A = {一次取2个,取出的球中有1个黄球,1个白球}P(A) = 3C1 * 7C1 / 10C2 = 7/15;
	
2. B = {一次取2个,取出的球中至少有一个黄球}P(B) = (3C1 * 7C1 + 3C2) / 10C2 = 8/15;
	或者 P(B) = 1 - (7C2 / 10C2) = 1 - 21/45 = 8/15;

3. C = {一次取1个,取后不放回,取出的球中有一个黄球,1个白球}
	P(C) = (3C1 / 10C1) * (7C1 / 9C1) * 2! = 7/15;

4. D = {一次取1个,取后放回,取出的球中有1个黄球,一个白球};
	P(D) = (3C1 / 10C1) * (7C1 / 10C1) * 2! = 21/50;

控球方式:
一次取k个:组合,无顺序;
每次取1个:有顺序 --> 1. 不放回:Ω减少; 2. 放回:Ω不变[独立]

分房问题

3人分配到4间房的每一间中,若每人被分配到这4间房的每一间房中的概率都相同,求下列事件的概率:
1. A = [第一、二、三号房中各有1}
	P(A) = 3P3 / 4^3 = 3/32;

2. B = {恰有2个房间中各有1}
	P(B) = 4P3 / 4^3 = 3/8; 

3. C = {指定房间中恰好有1}
	P(C) = (1C3 * 3C1 * 3C1) / 4^3 = 27/64

分房操作:
将人分到房间中;
指定不用选,恰要选;
房间中人数要求。

取样问题

从标号为12.....66个球中取3个球,求下列事件的概率:
	A = {含有2号球}P(A) = 5C2 / 6C3 = 1/2

	B = {不含3号球}P(B) = 5C3 / 6C3 = 1/2

	C = {含有2号球且不含3号球}P(C) = 4C2 / 6C3 = 3/10

	D = {2号或含3号球}
	P(D) = (5C2 + 5C2 - 4C1) / 6C3 = 4/5P(D) = 1 - (4C3 / 6C3) = 1 - 4/20 = 4/5

	E = {最大号码为4}
	P(E) = 3C2 / 6C3 = 3/20

取样问题:
含与不含;
或 和 且;
最大与最小;

概率的几何概型

几何型试验:
结果为无限个;
每个结果出现是等可能的。

        L(A)
P(A) = ——————
        L(B)

其中L(Ω)与L(A) 分别为Ω与A的几何度量(长度,面积,体积)。

例、随机的向半圆0<y<(2ax - x2)(1/2) (a为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x轴的夹角小于(兀 / 4)的概率为:
P(A) = N(A) / N(Ω) = ((1/2a ^ 2) + (1/4兀 a ^ 2) ) / (1/2兀 a ^ 2) = (1/兀 + 1/2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值