在数据科学领域,Python 是一种极为流行的编程语言,尤其是在大数据分析和数据预处理方面。Pandas 和 NumPy 是 Python 中最常用的两个库,分别用于数据处理和高效的数值计算。本文将展示如何利用 Pandas 和 NumPy 进行大数据的预处理、清洗、分析和可视化,帮助读者掌握基本的数据分析技能,并通过实际案例掌握数据分析的流程。
1. 数据获取与加载
数据分析的第一步通常是从各种来源获取数据。在这个实战项目中,我们假设要分析一份电商平台的销售数据,数据包含了每个订单的详细信息,如用户ID、商品类别、订单金额、购买时间等。
使用 Pandas,可以非常方便地读取不同格式的数据,如 CSV、Excel、SQL 数据库等。以下是读取 CSV 文件的代码:
import pandas as pd
# 读取 CSV 文件
data = pd.read_csv('ecommerce_sales.csv')
# 查看前5行数据
print(data.head())
2. 数据清洗与预处理
在获取数据后,接下来的任务是清洗数据。数据清洗包括去除重复数据、处理缺失值、转换数据类型、处理异常值等。我们将通过以下步骤对数据进行清洗:
2.1 处理缺失值
在实际数据中,缺失值是常见的现象。Pandas 提供了多种方法来处理缺失值,可以选择删除缺失值或者用其他值进行填充。比如,删除含有缺失值的行:
# 删除包含缺失值的行
data = data.dropna()
或者,可以用某个特定的值(例如平均值或中位数)来填充缺失值:
# 用订单金额的均值填充缺失