【可解释论文阅读】13.LRP(Layer-wise relevance propagation相关性分数逐层传播)

On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation


期刊
PLOS one
一个风评不佳的水刊,但这篇论文算是精品,很多顶会顶刊都有引用

论文内容

目的
找出输入像素x的每个输入像素 x ( d ) x_{(d)} x(d)对特定预测 f ( x ) f(x) f(x)的贡献

主要思想的公式
f ( x ) ≈ ∑ d = 1 V R d f(x)\approx \sum_{d=1}^VR_d f(x)d=1VRd

主要思想的图片图一
提出的新概念
LRP,layer-wise relevance propagation 相关性分数逐层传播

  • 提出的这一方法不涉及图像分割
  • 方法建立在预先训练好的分类器之上
  • LRP作为由一组约束定义的概念,满足约束的方案都认为遵守LRP,作者给两个特定分类器订制了解决方案。本文只关注LRP在多层网络(Multilayer Networks)上的思想。ps:也不关注泰勒分解。

LRP较详解

像上图右侧部分所示,对于LRP来说,第一层是输出,最后一层是输入
每一层各个维度(某个维度就是某个神经元)的相关性之和守恒
f ( x ) = … = ∑ d ∈ l + 1 R d l + 1 = ∑ d ∈ l R d l = … = ∑ d R d 1 f(x) = …=\sum_{d\in l+1}R_{d}^{l+1}=\sum_{d\in l}R_{d}^{l}=…=\sum_{d}R_{d}^{1} f(x)==dl+1Rdl+1=dlRdl==dRd1

Multilayer Network之LRP

一般的网络(Multilayer Network)可以表示为:
z i j = x i w i j , z_{ij} = x_{i}w_{ij}, zij=xiwij,
z j = ∑ i z i j + b j , z_{j} = \sum_{i}z_{ij}+b_j, zj=izij+bj,
x j = g ( z j ) x_{j} = g(z_{j}) xj=g(zj)

解释:
①神经元i*神经元i与神经元j之间的权重,得到zij
②把所有神经元到神经元j的zij合起来加上bias term 偏置项,得到上一层所有神经元到神经元j的向量zj
③经激活函数g(like sigmoid relu)处理得到下一层神经元xj

  • 泰勒部分
    不看
  • LRP部分——Layer-wise relevance backpropagation
    下图是图形示例

    对于 R i ← j ( l , l + 1 ) R_{i\leftarrow j}^{(l,l+1)} Rij(l,l+1)含义的示意图

工作原理:

Knowing the relevance of a certain neuron R j ( l + 1 ) R_{j}^{(l+1)} Rj(l+1)for the classification decision f ( x ) f(x) f(x), one would like to obtain a decomposition of such relevance in terms of messages sent to neurons of the previous layers. We call these messages R i ← j R_{i\leftarrow j} Rij

了解特定神经元与分类决策函数 f ( x ) f(x) f(x)的相关性 R j ( l + 1 ) R_{j}^{(l+1)} Rj(l+1),希望根据发送到前一层(靠近input为前)的神经元的消息来获得这种相关性的分解,称这些消息是 R i ← j R_{i\leftarrow j} Rij
其中, ∑ i \sum_{i} i :给定层所有神经元之和; ∑ j \sum_{j} j :某一层所有神经元之和

公式为:
∑ i R i ← j l , l + 1 \sum_{i}R_{i\leftarrow j}^{l,l+1} iRijl,l+1 = R j ( l + 1 ) R_{j}^{(l+1)} Rj(l+1)
含义: l + 1 l+1 l+1层的某个神经元j的相关性 = = = l + 1 l+1 l+1层的神经元 j j j l l l层所有神经元的相关性之和

z:向量( l + 1 l+1 l+1层所有的神经元合起来)
一个线性网络
,在这里,相关性分数为 R j = f ( x ) R_{j} = f(x) Rj=f(x),这样的话,分解可以直接由式子得到 R i ← j = z i j R_{i\leftarrow j} = z_{ij} Rij=zij。然而,一般情况下,激活神经元xj对于zj来说是非线性的函数,对于这种,有两种公式,一种是对于激活函数是双曲正切tanhx或者修正函数max(0,x)可以用以下第一个公式,其他的可以用第二个。

在实际应用中,LRP有两种改进形式,分别是 ϵ − r u l e \epsilon-rule ϵrule(第一个) 和 β − r u l e \beta -rule βrule(第二个)

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值