# PAT_A1009 Product of Polynomials

5 篇文章 0 订阅

## PAT学习笔记之A1009 Product of Polynomials (25 分)

This time, you are supposed to find A×B where A and B are two polynomials.

## Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
K N1​ aN1 N2​ aN2 … NK aNK

where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10，0≤NK <⋯<N2 <N1≤1000.

## Output Specification:

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

2 1 2.4 0 3.2
2 2 1.5 1 0.5

## Sample Output:

3 3 3.6 2 6.0 1 1.6

## 完整代码：

#include <iostream>
using namespace std;

int main() {
double s1={},s2={},s={},d;
int i,j,k1,k2,n,sum=0;
if(scanf("%d",&k1)){};
for(i=0;i<k1;i++){
if(scanf("%d %lf",&n,&d)){};
s1[n]+=d;

}
if(scanf("%d",&k2)){};
for(i=0;i<k2;i++){
if(scanf("%d %lf",&n,&d)){};
s2[n]+=d;
}
for(i=0;i<1001;i++){
for(j=0;j<1001;j++){
if(s1[i]!=0&&s2[j]!=0){
s[i+j]+=(s1[i]*s2[j]);
}
}
}
for(i=0;i<2001;i++){
if(s[i]!=0){
sum++;
}
}
printf("%d",sum);
for(i=2000;i>=0;i--){
if(s[i]!=0){
printf(" %d %.1lf",i,s[i]);
}
}
return 0;
}

01-30 1320
05-10 3万+  07-23 4
09-11 9
09-14 55
02-01 180
01-22 40
02-15 47
02-14 37
04-12 41
08-19 6
12-31 84
10-03 57
02-15 313
07-25 45
10-19 点击重新获取   扫码支付  余额充值