矩阵分析与应用+张贤达

第一章 矩阵与线性方程组(四)

一、初等行变换与阶梯型矩阵

1. 初等行变换

涉及矩阵行与行之间的简单运算称为初等行运算初等行变换
只使用初等行运算,就可以解决矩阵方程求解矩阵求逆矩阵的基本空间的基向量构造等复杂问题。

  • 令矩阵 A A A的m个行向量分别为 r 1 , r 2 , ⋅ ⋅ ⋅ , r m r_1,r_2,···,r_m r1,r2,,rm
    (1)互换矩阵的任意两行,如 r p ↔ r q r_p \leftrightarrow r_q rprq,称为 I \Iota I型初等行变换。
    (2)一行元素同乘一个非零常数 α \alpha α,如 α r p → r q \alpha r_p \rightarrow r_q αrprq,称为 Π \Pi Π型初等行变换。
    (3)将第p行元素同乘一个非零常数 β \beta β后,加给第q行,即 β r p + r q → r q \beta r_p + r_q \rightarrow r_q βrp+rqrq

  • 若矩阵 A m ∗ n A_{m*n} Amn经过一系列初等行运算,变换成为矩阵 B m ∗ n B_{m*n} Bmn,则称矩阵 A A A B B B行等价矩阵

2. 阶梯型矩阵

  • 一个非零行最左边的非零元素称为该行的首项元素。如果首项元素等于1,便称之为首一元素

  • 一个m*n矩阵称为阶梯型矩阵,若
    (1)全部由零组成的所有行都位于矩阵的底部。
    (2)每一个非零行的首项元素总是出现在上一个非零行的首项元素的右边。
    (3)首项元素下面的同列元素全部为零。
    例如:
    在这里插入图片描述
    *表示该元素可以为任意值。

  • 一个阶梯型矩阵称为简约阶梯型,若
    每一非零行的首项元素等于1(即为首一元素),并且每一个首一元素也是它所在列唯一的非零元素。

  • 将m*n矩阵化成简约阶梯型
    (1)将含有一个非零元素的列设定为最左边的第1列。
    (2)如果需要,将第1行与其他行互换,以使第1个非零列在第1列有一个非零元素。
    (3)如果第1行的首项元素为 a,则将该行的所有元素乘以 1/a,以使该行的首
    项元素等于 1,成为首一元素。
    (4)通过初等行变换,将其他行位于第1行首一元素下面的全部元素变成 0。
    (5)对第i=2,3,···,m 行依次重复以上步骤,以使每一行的首一元素出现在上
    一行的首一元素的右边,才使与第之行首一元素同列的其他各行元素都变为 0。

  • 任何一个矩阵$ A_{m*n} $都与一个并且唯一的一个简约阶梯型矩阵是行等价的。

  • 矩阵 A A A主元位置就是矩阵 A A A中与其阶梯型的首项元素相对应的位置。矩阵 A A A中包含主元位置的每一列都称为 A A A主元列

例如:
在这里插入图片描述
在这里插入图片描述

二、 向量空间、内积空间与线性映射

1. 集合

X X X Y Y Y为集合,且 x ∈ X x \in X xX y ∈ Y y \in Y yY,则所有有序对 ( x , y ) (x,y) (x,y)的集合记为 X × Y X × Y X×Y,称为集合 X X X Y Y Y笛卡儿积,即
X × Y = ( x , y ) : x ∈ X , y ∈ Y X × Y = {(x,y):x \in X,y \in Y} X×Y=(x,y):xX,yY
类似地, X 1 × X 2 × ⋅ ⋅ ⋅ × X n X_1 × X_2 ×···× X_n X1×X2××Xn表示n个集合 X 1 , X 2 , ⋅ ⋅ ⋅ , X n X_1,X_2,···,X_n X1,X2,,Xn的笛卡儿积,其元素为有序n元组

2. 向量空间

以向量为元素的集合 V V V称为向量空间。
若加法运算定义为两个向量之间的加法,乘法运算定义为向量与标量域 S S S中的标量之间的乘法。

2.1 八个公理

对于向量集合 V V V中的向量 x , y , w x,y,w x,y,w和标量域 S S S中的标量 a 1 , a 2 a_1,a_2 a1,a2,以下两个闭合性和关于加法乘法的八个公理满足:

  • 闭合性:
    (1)若 x ∈ V x \in V xV y ∈ V y \in V yV,则 x + y ∈ V x + y \in V x+yV,即 V V V在加法下是闭合的,简称加法的闭合性
    (2)若 a 1 a_1 a1是一个标量, y ∈ V y \in V yV,则 a 1 y ∈ V a_1y \in V a1yV,即 V V V在标量乘法下是闭合的,简称标量乘法的闭合性

  • 加法:
    (1) x + y = y + x , ∀ x , y ∈ V x + y = y + x, \forall x,y \in V x+y=y+x,x,yV,称为加法的交换律
    (2) x + ( y + w ) = ( x + y ) + w , ∀ x , y , w ∈ V x + (y +w) = (x+y)+w,\forall x,y,w \in V x+(y+w)=(x+y)+w,x,y,wV,称为加法的结合律
    (3)在 V V V中存在一个零向量 0 0 0,使得对于任意向量 y ∈ V y \in V yV,恒有 y + 0 = y y+0=y y+0=y(零向量的存在性
    (4)给定一个向量 y ∈ V y \in V yV,存在另一个向量 − y ∈ V -y \in V yV使得 y + ( − y ) = 0 = ( − y ) + y y+(-y) = 0 = (-y) + y y+(y)=0=(y)+y负向量的存在性

  • 标量乘法:
    (1) a ( b y ) = ( a b ) y a(by) = (ab)y a(by)=(ab)y对所有向量 y y y和所有标量 a , b a,b a,b成立,称为标量乘法的结合律
    (2) a ( x + y ) = a x + a y a(x+y)= ax + ay a(x+y)=ax+ay对所有向量 x , y ∈ V x,y \in V x,yV和标量 a a a成立,称为标量乘法的分配律
    (3) ( a + b ) y = a y + b y (a+b)y = ay + by (a+b)y=ay+by对所有向量 y y y和所有标量 a , b a,b a,b成立(标量乘法的分配律)
    (4) 1 y = y 1y = y 1y=y对所有 y ∈ V y \in V yV成立,称为标量乘法的单位律

如果 V V V中的向量为实向量,并且标量域为实数域,则称 V V V实向量空间
V V V中的向量为复向量,且标量域为复数域,便称 V V V复向量空间

  • 如果 V V V是一个向量空间,则
    (1)零向量 0 0 0是唯一的
    (2)对每一个向量 y y y,加法的逆运算 − y -y y是唯一的
    (3)对每一个向量 y y y,恒有 0 y = 0 0y = 0 0y=0
    (4)对每一个标量 a a a,恒有 a 0 = 0 a0 = 0 a0=0
    (5)若 a y = 0 ay = 0 ay=0,则 a = 0 a = 0 a=0或者 y = 0 y=0 y=0
    (6) ( − 1 ) y = − y (-1)y = -y (1)y=y

2.2 n阶实/复向量空间

对于一个正整数n,实数的所有有序n元组 [ x 1 , x 2 , ⋅ ⋅ ⋅ , x n ] [x_1,x_2,···,x_n] [x1,x2,,xn]的集合记为 R n R^n Rn,它的每个元素称为向量(均为n*1向量)。特别地,若n=1,则 R R R的元素称为标量。如果对集合 R n R^n Rn定义两个向量的加法和一个标量与一个向量的乘法,则称 R n R^n Rn为n阶实向量空间。

类似地,若在复数的所有有序n元组的集合 C n C^n Cn内定义向量加法和标量乘法,则称 C n C^n Cn为n阶复向量空间。

我们关心向量空间中某个特定的向量子集合 W W W。以 R 3 R^3 R3的子集合为例:
W = x : x = [ x 1 , x 2 , 0 ] T , x 1 和 x 2 为 实 数 W={x:x=[x_1,x_2,0]^T,x_1和x_2为实数} W=x:x=[x1,x2,0]T,x1x2

从几何的观点看, R 3 R^3 R3是一个三维空间,而 W W W是二维 x − y x-y xy平面,可以用 R 2 R^2 R2表示。

2.3 子空间

  • R n R^n Rn子集合 W W W R n R^n Rn的子空间,当且仅当一下三个条件满足:
    (1)每当向量 x , y x,y x,y属于 W W W,则 x + y x+y x+y也属于 W W W,即满足加法的闭合性
    x , y ∈ W ⇒ ( x + y ) ∈ W x,y \in W \Rightarrow (x+y) \in W x,yW(x+y)W
    (2)每当向量 x x x属于 W W W,且 α \alpha α为标量时,则 α x \alpha x αx属于 W W W,即满足与标量乘法的闭合性
    (3)零向量 0 0 0 W W W的元素

  • A A A B B B是向量空间 V V V的两个子空间,并满足 V = A + B V = A+B V=A+B A ∩ B = 0 A \cap B = {0} AB=0,则称 V V V是子空间 A A A B B B的直接求和,简称直和,记作 V = A ⊗ B V=A \otimes B V=AB

  • A A A B B B是向量空间 V V V的向量子空间,则 A + B A+B A+B A ∩ B A \cap B AB也是 V V V的向量子空间。

  • A A A B B B是向量空间 V V V的子空间,则 A + B A+B A+B V V V中包含向量子空间 A A A B B B的最小向量子空间。

  • A A A B B B是向量空间 V V V的子空间,则子空间的交 A ∩ B A \cap B AB V V V中既属于 A A A,又属于 B B B的最大向量子空间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值