矩阵分析与应用+张贤达

奇异值的性质

令矩阵 A A A B B B均为 m × n m\times n m×n矩阵,并且 r A = r a n k ( A ) , p = m i n m , n r_A=rank(A),p=min{m,n} rA=rank(A)p=minm,n
设矩阵 A A A的奇异值排列为
σ m a x = σ 1 ≥ σ 2 ≥ … ≥ σ p − 1 ≥ σ p = σ m i n ≥ 0 \sigma_max=\sigma_1≥\sigma_2≥…≥\sigma_{p-1}≥\sigma_p=\sigma_{min} ≥ 0 σmax=σ1σ2σp1σp=σmin0
并且用 σ i ( B ) \sigma_i(B) σi(B)表示矩阵 B B B的第 i i i个大奇异值。

矩阵的各种变形与奇异值的变化有以下关系
(1) m × n m\times n m×n矩阵 A A A的共轭转置 A H A^H AH的奇异值分解为
A H = V Σ T U H A^H =V\Sigma^TU^H AH=VΣTUH
即矩阵 A A A A H A^H AH具有完全相同的奇异值。
(2) P P P Q Q Q分别为 m × m m\times m m×m n × n n\times n n×n酉矩阵时, P A Q H PAQ^H PAQH的奇异值分解由
P A Q H = U ‾ Σ V ‾ H PAQ^H =\overline{U}\Sigma \overline{V}^H PAQH=UΣVH
给出,其中, U ‾ = P U , V ‾ = Q V \overline{U}=PU,\overline{V}=QV U=PUV=QV。就是说,矩阵 P A Q H PAQ^H PAQH A A A具有相同的奇异值,即奇异值具有酉不变性,但奇异向量不同。
(3) A H A , A A H A^HA,AA^H AHA,AAH的奇异值分解分别为
A H A = V Σ T Σ V H , A A H = U Σ Σ T U H A^HA=V\Sigma^T\Sigma V^H, AA^H=U\Sigma \Sigma^TU^H AHA=VΣTΣVH,AAH=UΣΣTUH
其中
Σ T Σ = d i a g ( σ 1 2 , σ 2 2 , … , σ r 2 , 0 , … , 0 ) \Sigma^T\Sigma = diag(\sigma_1^2,\sigma_2^2,… ,\sigma_r^2,0,…,0) ΣTΣ=diag(σ12,σ22,,σr2,0,,0)
Σ Σ T = d i a g ( σ 1 2 , σ 2 2 , … , σ r 2 , 0 , … , 0 ) \Sigma \Sigma^T = diag(\sigma_1^2,\sigma_2^2,… ,\sigma_r^2,0,…,0) ΣΣT=diag(σ12,σ22,,σr2,0,,0)
注: A H A A^HA AHA A A H AA^H AAH均为Hermitian矩阵。Hermitian矩阵的奇异值分解与特征值分解是一致的。
(4) m × n m\times n m×n矩阵 A A A的奇异值分解与 n × m n\times m n×m维MoorePenrose广义逆矩阵 A + A^+ A+之间存在下列关系:
A + = V Σ + U H A^+=V\Sigma^+U^H A+=VΣ+UH

定理
A A A是一个 m × n m\times n m×n矩阵,其奇异值 σ 1 ≥ σ 2 ≥ … ≥ σ r \sigma_1≥\sigma_2≥…≥\sigma_r σ1σ2σr其中, r = m i n m , n r=min{m,n} r=minm,n。若 p × q p\times q p×q矩阵 B B B A A A的子矩阵,其奇异值 γ 1 ≥ γ 2 ≥ … ≥ γ m i n { p , g } \gamma_1≥\gamma_2≥…≥ \gamma_{min\{p,g\}} γ1γ2γmin{p,g}
σ i ≥ γ i , i = 1 , 2 , … , m i n { p , q } \sigma_i≥\gamma_i,i=1,2,…,min\{p,q\} σiγii=1,2,,min{p,q}
并且
γ i ≥ σ i + ( m − p ) + ( n − q ) , i ≤ m i n { p + q − m , p + q − n } \gamma_i≥\sigma_{i+(m-p)+(n-q)},i≤min\{p+q-m,p+q-n\} γiσi+(mp)+(nq)imin{p+qm,p+qn}

奇异值与范数的关系
矩阵 A A A的谱范数等于 A A A的最大奇异值,即
∣ ∣ A ∣ ∣ s p e c = σ 1 ||A||_{spec}=\sigma_1 ∣∣Aspec=σ1
根据矩阵的奇异值分解定理,并注意到矩阵 A A A的Frobenius范数 ∣ ∣ A ∣ ∣ F ||A||_F ∣∣AF是西不变的,即 ∣ ∣ U H A V ∣ ∣ F = ∣ ∣ A ∣ ∣ F ||U^HAV||_F=||A||_F ∣∣UHAVF=∣∣AF,故有
即是说,任何一个矩阵的Frobenius范数等于该矩阵所有非零奇异值平方和的正平方根。

考虑矩阵 A A A的秩k近似,并将其记作 A k A_k Ak,其中, k < r = r a n k ( A ) k<r=rank(A) k<r=rank(A)。矩阵 A k A_k Ak定义如下:
A k = ∑ i = 1 k σ i u i c i H , k < r A_k=\sum_{i=1}^k\sigma_i u_i c_i^H, k <r Ak=i=1kσiuiciH,k<r
A A A与秩为k的任一矩阵B之差的i和Frobineus范数分别为
min ⁡ r a n k ( B ) = k ∣ ∣ A − B ∣ ∣ 1 = ∣ ∣ A − A k ∣ ∣ 1 = σ k + 1 \min_{rank(B)=k}||A-B||_1=||A-A_k||_1=\sigma_{k+1} rank(B)=kmin∣∣AB1=∣∣AAk1=σk+1

min ⁡ r a n k ( B ) = k ∣ ∣ A − B ∣ ∣ F 2 = ∣ ∣ A − A k ∣ ∣ F 2 = σ k + 1 2 + σ k + 2 2 + … + σ r 2 \min_{rank(B)=k}||A-B||_F^2=||A-A_k||_F^2=\sigma_{k+1}^2+\sigma_{k+2}^2+…+\sigma_{r}^2 rank(B)=kmin∣∣ABF2=∣∣AAkF2=σk+12+σk+22++σr2

这一重要结果是许多概念和应用的基础。例如,总体最小二乘、数据压缩、图像增强、动态系统实现理论,以及线性方程的求解等问题都需要用一个低秩矩阵近似 A A A

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值