矩阵分析与应用+张贤达

奇异值与行列式的关系

A A A n × n n\times n n×n正方矩阵。由于酉矩阵的行列式之绝对值等于1,所以有
∣ d e t ( A ) ∣ = ∣ d e t Σ ∣ = σ 1 σ 2 … σ n |det(A)|=|det\Sigma|=\sigma_1 \sigma_2…\sigma_n det(A)=detΣ∣=σ1σ2σn
若所有 σ i \sigma_i σi都不等于零,则 ∣ d e t ( A ) ∣ ≠ 0 |det(A)|≠0 det(A)=0这表明 A A A是非奇异的。如果至少有一个 σ i ( i > r ) \sigma_i(i>r) σi(i>r)等于零,便有 d e t ( A ) = 0 det(A)=0 det(A)=0,即 A A A是奇异的。这就是之所以把全部 σ i \sigma_i σi值统称为奇异值的原因。
对于一个 n × n n\times n n×n矩阵 A A A,下列不等式成立:
{ n σ 1 ≥ ∣ ∣ A ∣ ∣ F ≥ σ 1 σ 1 n ≥ σ 1 n − 1 σ n ≥ ∣ d e t ( A ) ∣ ≥ σ n n ∣ ∣ A ∣ ∣ F ≥ σ 1 > ∣ d e t ( A ) ∣ 1 / n ∣ d e t ( A ) ∣ 1 / n ≥ σ n ≥ ∣ d e t ( A ) ∣ / ∣ ∣ A ∣ ∣ F n − 1 ∣ ∣ A ∣ ∣ F n / d e t ( A ) ∣ ≥ σ 1 / σ n ≥ m a x { 1 , 1 n ∣ ∣ A ∣ ∣ F / ∣ d e t ( A ) ∣ 1 / n } \begin{cases} n\sigma_1 ≥ ||A||_F ≥ \sigma_1\\ \sigma_1^n≥\sigma_1^{n-1}\sigma_n≥|det(A)| ≥\sigma_n^n\\ ||A||_F ≥\sigma_1>|det(A)|^{1/n}\\ |det(A)|^{1/n}≥\sigma_n≥|det(A)|/||A||_F^{n-1}\\ ||A||_F^n/det(A)| ≥\sigma_1/\sigma_n ≥ max \{1,\frac{1}{n}||A||_F/|det(A)|^{1/n}\} \end{cases} nσ1∣∣AFσ1σ1nσ1n1σndet(A)σnn∣∣AFσ1>det(A)1/ndet(A)1/nσndet(A)∣/∣∣AFn1∣∣AFn/det(A)σ1/σnmax{1,n1∣∣AF/∣det(A)1/n}
这些不等式虽然是粗略的评价,但有时是有用的。

奇异值与条件数的关系

对于一个 m × n m\times n m×n矩阵 A A A,其条件数也可以利用奇异值定义为
c o n d ( A ) = σ 1 / σ p , p = m i n { m , n } cond(A)=\sigma_1/\sigma_p,p=min\{m,n\} cond(A)=σ1/σp,p=min{m,n}
由上式可以看出,条件数是一个大于或等于1的正数,因为 σ 1 ≥ σ p \sigma_1≥\sigma_p σ1σp 。显然,由于至少有一个奇异值 σ p = 0 \sigma_p=0 σp=0,故奇异矩阵的条作数为无穷大,而条件数虽然不是无穷大,但却很大时,就称 A A A是接近奇异的。这意味着,当条件数很大时, A A A的行向量或列向量的线性相关性很强。另知,正交或西矩阵 V V V的条件数等于1。
从这个意义上讲,正交或酉矩阵是“理想条件”的。

考虑超定方程 A x = b Ax=b Ax=b。此时,由于 A H A A^HA AHA的奇异值分解为
A H A = V Σ 2 V H A^HA = V\Sigma^2V^H AHA=VΣ2VH
即矩阵 A H A A^HA AHA的最大和最小奇异值分别是矩阵 A A A的最大和最小奇异值的平方,故
c o n d ( A H A ) = σ 1 2 σ n 2 = [ c o n d ( A ) ] 2 cond(A^HA) =\frac{\sigma_1^2}{\sigma_n^2}=[cond(A)]^2 cond(AHA)=σn2σ12=[cond(A)]2
换言之,矩阵 A H A A^HA AHA的条件数是矩阵 A A A的条件数的平方倍。

奇异值与特征值的关系

n × n n\times n n×n正方对称矩阵 A A A的特征值为 λ 1 , λ 2 , … , λ n ( ∣ λ 1 ∣ ≥ ∣ λ 2 ∣ ≥ … ≥ λ n ) \lambda_1,\lambda_2,…,\lambda_n(|\lambda_1|≥|\lambda_2|≥…≥\lambda_n) λ1,λ2,,λn(λ1λ2λn),奇异值为 σ 1 , σ 2 , … , σ n ( σ 1 ≥ σ 2 ≥ … ≥ σ n ≥ 0 ) \sigma_1,\sigma_2,…,\sigma_n(\sigma_1≥\sigma_2≥…≥\sigma_n≥0) σ1,σ2,,σn(σ1σ2σn0),则 σ 1 ≥ ∣ λ i ∣ ≥ σ n ( i = 1 , 2 , … , n ) , c o n d ( A ) ≥ ∣ λ 1 ∣ / ∣ λ n ∣ \sigma_1≥|\lambda_i|≥\sigma_n(i=1,2,…,n),cond(A)≥|\lambda_1|/|\lambda_n| σ1λiσn(i=1,2,,n),cond(A)λ1∣/∣λn

奇异值的性质汇总

1.奇异值服从的等式关系

(1) A m × n A_{m\times n} Am×n和其复共轭转置矩阵 A H A^H AH具有相同的奇异值。
(2)矩阵 A m × n A_{m\times n} Am×n的非零奇异值是 A A H AA^H AAH或者 A H A A^HA AHA的非零特征值的正平方根。
(3) σ > 0 \sigma>0 σ>0是矩阵 A m × n A_{m\times n} Am×n的单奇异值,当且仅当 σ 2 \sigma_2 σ2 A A H AA^H AAH A H A A^HA AHA的单特征值。
(4)若 p = m i n { m , n } p=min\{m,n\} p=min{m,n},且 σ 1 , σ 2 , … , σ p \sigma_1,\sigma_2,…,\sigma_p σ1,σ2,,σp是矩阵 A m × n A_{m\times n} Am×n的奇异值,则
t r ( A H A ) = ∑ i = 1 p σ i 2 tr(A^HA)=\sum_{i=1}^p\sigma_i^2 tr(AHA)=i=1pσi2
(5)矩阵行列式的绝对值等于矩阵奇异值之乘积,即 ∣ d e t ( A ) ∣ = σ 1 , σ 2 , … , σ n |det(A)|=\sigma_1,\sigma_2,…,\sigma_n det(A)=σ1,σ2,,σn
(6)矩阵 A A A的谱范数等于 A A A的最大奇异值,即 ∣ ∣ A ∣ ∣ s p e c = σ m a x ||A||_{spec}=\sigma_{max} ∣∣Aspec=σmax
(7)若 m ≥ n m≥n mn,则对于矩阵 A m × n A_{m\times n} Am×n,有
σ m i n ( A ) = m i n { ( x H A H A x x H x ) 1 / 2 : x ≠ 0 } \sigma_{min}(A)= min\{(\frac{x^HA^HAx}{x^Hx})^{1/2} : x \ne 0\} σmin(A)=min{(xHxxHAHAx)1/2:x=0}
= m i n { ( x H A H A x ) 1 / 2 : x H x = 1 , x ∈ C n } =min\{(x^HA^HAx)^{1/2}:x^Hx=1,x\in C^n\} =min{(xHAHAx)1/2:xHx=1,xCn}
(8)若 m ≥ n m≥n mn,则对于矩阵 A m × n A_{m\times n} Am×n,有
σ m a x ( A ) = m a x { ( x H A H A x x H x ) 1 / 2 : x ≠ 0 } \sigma_{max}(A)= max\{(\frac{x^HA^HAx}{x^Hx})^{1/2} : x \ne 0\} σmax(A)=max{(xHxxHAHAx)1/2:x=0}
= m a x { ( x H A H A x ) 1 / 2 : x H x = 1 , x ∈ C n } =max\{(x^HA^HAx)^{1/2}:x^Hx=1,x\in C^n\} =max{(xHAHAx)1/2:xHx=1,xCn}
(9)若 m × m m\times m m×m矩阵 A A A非奇异,则
1 σ m i n ( A ) = m a x { ( x H ( A − 1 ) H A − 1 x x H x ) 1 / 2 : x ≠ 0   , x ∈ C n } \frac{1}{\sigma_{min}(A)}=max\{(\frac{x^H(A^{-1})^HA^{-1}x}{x^Hx})^{1/2} : x \ne 0\ ,x\in C^n\} σmin(A)1=max{(xHxxH(A1)HA1x)1/2:x=0 ,xCn}
(10)若 A = U [ Σ 1 O O O ] V H A=U\begin{bmatrix}\Sigma_1&O\\O&O\end{bmatrix}V^H A=U[Σ1OOO]VH m × n m\times n m×n矩阵 A A A的奇异值分解,则 A A A的Moore-Penrose
逆矩阵
A + = V [ Σ 1 − 1 O O O ] U H A^+=V \begin{bmatrix} \Sigma_1^{-1}&O\\ O&O \end{bmatrix}U^H A+=V[Σ11OOO]UH
(11)若 σ 1 , σ 2 , … , σ p \sigma_1,\sigma_2,…,\sigma_p σ1,σ2,,σp m × n m\times n m×n矩阵 A A A的非零奇异值(其中, p = m i n { m , n } p=min\{m,n\} p=min{m,n}),则矩阵 [ O A A H O ] \begin{bmatrix}O&A\\A^H&O\end{bmatrix} [OAHAO]具有 2 p 2p 2p个非零奇异值 σ 1 , … , σ p , − σ 1 , . . . , − σ p \sigma_1,…,\sigma_p,-\sigma_1,...,-\sigma_p σ1,,σp,σ1,...,σp ∣ m − n ∣ |m-n| mn个零奇异值。

2.奇异值服从的不等式关系

(1)若 A A A B B B m × n m\times n m×n矩阵,则对于 1 ≤ i , j ≤ p , i + j ≤ p + 1 ( p = m i n { m , n } ) 1≤i,j≤p,i+j≤p+1(p=min\{m,n\}) 1i,jp,i+jp+1(p=min{m,n}),有
σ i + j − 1 ( A + B ) ≤ σ i ( A ) + σ j ( B ) \sigma_{i+j-1}(A+B)≤\sigma_i(A)+\sigma_j(B) σi+j1(A+B)σi(A)+σj(B)
特别地,当 j = 1 j=1 j=1时, σ i ( A + B ) ≤ σ i ( A ) + σ 1 ( B ) , i = 1 , 2 , … , p \sigma_i(A+B)≤\sigma_i(A)+\sigma_1(B),i=1,2,…,p σi(A+B)σi(A)+σ1(B),i=1,2,,p成立。
(2)对矩阵 A m × n , B m × n A_{m\times n},B_{m\times }n Am×n,Bm×n,有
σ m a x ( A + B ) ≤ σ m a x ( A ) + σ m a x ( B ) \sigma_{max}(A+B)≤\sigma_{max}(A)+\sigma_{max}(B) σmax(A+B)σmax(A)+σmax(B)
(3)若 A A A B B B m × n m\times n m×n矩阵,则
∑ j = 1 p [ σ j ( A + B ) − σ j ( A ) ] 2 ≤ ∣ ∣ B ∣ ∣ F 2 , p = m i n { m , n } \sum_{j=1}^p[\sigma_j(A+B)-\sigma_j(A)]^2 ≤ ||B||_F^2,p=min\{m,n\} j=1p[σj(A+B)σj(A)]2∣∣BF2,p=min{m,n}
(4)若 A m × m = [ a 1 , a 2 , … , a m ] A_{m\times m}=[a_1,a_2,…,a_m] Am×m=[a1,a2,,am]的奇异值 σ 1 ( A ) ≥ σ 2 ( A ) ≥ … ≥ σ m ( A ) \sigma_1(A)≥\sigma_2(A)≥…≥\sigma_m(A) σ1(A)σ2(A)σm(A),则
∑ j = 1 k [ σ m − k + j ( A ) 2 ≤ ∑ j = 1 k a j H a j ≤ ∑ j = 1 k [ σ j ( A ) ] 2 , k = 1 , 2 , . . . , m \sum_{j=1}^k[\sigma_{m-k+j}(A)^2 ≤ \sum_{j=1}^ka_j^Ha_j≤\sum_{j=1}^k[\sigma_j(A)]^2,k=1,2,...,m j=1k[σmk+j(A)2j=1kajHajj=1k[σj(A)]2,k=1,2,...,m
(5)设 m × ( n − 1 ) m\times (n-1) m×(n1)矩阵 B B B是删去 m × n m\times n m×n矩阵 A A A任意一列得到的矩阵,并且它们的奇异值都按照非降顺序排列,则
σ 1 ( A ) ≥ σ 1 ( B ) ≥ σ 2 ( A ) ≥ σ 2 ( B ) ≥ … ≥ σ h ( A ) ≥ σ h ( B ) ≥ 0 \sigma_1(A)≥\sigma_1(B)≥\sigma_2(A)≥\sigma_2(B)≥…≥\sigma_h(A)≥\sigma_h(B)≥0 σ1(A)σ1(B)σ2(A)σ2(B)σh(A)σh(B)0
式中, h = m i n { m , n − 1 } h=min\{m,n-1\} h=min{m,n1}
(6)设 ( m − 1 ) × n (m-1)\times n (m1)×n矩阵 B B B是删去 m × n m\times n m×n矩阵 A A A任意一行得到的矩阵,并且它们的奇异值都按照非降顺序排列,则
σ 1 ( A ) ≥ σ 1 ( B ) ≥ σ 2 ( A ) ≥ σ 2 ( B ) ≥ … ≥ σ h ( A ) ≥ σ h ( B ) ≥ 0 \sigma_1(A)≥\sigma_1(B)≥\sigma_2(A)≥\sigma_2(B)≥…≥\sigma_h(A)≥\sigma_h(B)≥0 σ1(A)σ1(B)σ2(A)σ2(B)σh(A)σh(B)0
式中, h = m i n { m , n − 1 } h=min\{m,n-1\} h=min{m,n1}
(7)矩阵 A m × n A_{m\times n} Am×n的最大奇异值满足不等式
σ m a x ( A ) ≥ [ 1 n t r ( A H A ) ] 1 / 2 \sigma_{max}(A)≥ [\frac{1}{n}tr(A^HA)]^{1/2} σmax(A)[n1tr(AHA)]1/2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值