矩阵分析与应用+张贤达

第一章 矩阵与线性方程组(二十)

1. 矩阵的秩的性质

乘积矩阵的秩

定理1
r A = r a n k ( A ) r_A=rank(A) rA=rank(A) r = r a n k ( B ) r=rank(B) r=rank(B),则乘积矩阵 A B AB AB的秩 r A B = r a n k ( A B ) r_{AB}=rank(AB) rAB=rank(AB)满足不等式
r A B ≤ m i n { r A , r B } r_{AB}≤min\{r_A,r_B\} rABmin{rA,rB}
证明
A A A B B B分别是 p × q p \times q p×q q × n q\times n q×n矩阵。不妨令 r A ≤ r B r_A≤r_B rArB,这意味着 r A ≤ m i n q , n r_A ≤min{q,n} rAminq,n。对于矩阵 A A A,假定 p × p p\times p p×p矩阵 P P P q × q q\times q q×q矩阵 Q Q Q分别是对 A A A的列和行进行初等变换的非奇异矩阵,并使得
P A Q = C = [ I r A O O A O ] 或 P A = [ T r A O O A O ] Q − 1 PAQ=C= \left[ \begin{matrix} I_{r_A} & O \\ O^A & O \end{matrix} \right] 或PA= \left[ \begin{matrix} T_{r_A} & O \\ O^A & O \end{matrix} \right]Q^{-1} PAQ=C=[IrAOAOO]PA=[TrAOAOO]Q1
B B B右乘第二式两边,由于 r A ≤ m i n q , n r_A≤min{q,n} rAminqn,故 q × n q\times n q×n矩阵 Q − 1 B Q^{-1}B Q1B可分块为
[ T r A × n S ( q − r A ) × n ] \left[ \begin{matrix} T_{r_A \times n} \\ S_{(q-r_A)\times n} \end{matrix} \right] [TrA×nS(qrA)×n]
使得
P A B = [ I r A O O A O ] Q − 1 B = [ I r A O O A O ] [ T r A × n S ( q − r A ) × n ] = [ T r A × n O ] PAB= \left[ \begin{matrix} I_{r_A} & O \\ O^A & O \end{matrix} \right]Q^{-1}B= \left[ \begin{matrix} I_{r_A} & O \\ O^A & O \end{matrix} \right] \left[ \begin{matrix} T_{r_A \times n} \\ S_{(q-r_A)\times n} \end{matrix} \right] = \left[ \begin{matrix} T_{r_A \times n} \\ O \end{matrix} \right] PAB=[IrAOAOO]Q1B=[IrAOAOO][TrA×nS(qrA)×n]=[TrA×nO]
由于 P P P是一系列初等变换的乘积,它不会改变矩阵 A B AB AB的秩,故
r a n k ( P A B ) = r a n k ( A B ) = r a n k [ T r A × n O ] ≤ r A rank(PAB) = rank(AB) = rank \left[ \begin{matrix} T_{r_A \times n} \\ O \end{matrix} \right] ≤r_A rank(PAB)=rank(AB)=rank[TrA×nO]rA

由于假定 r A ≤ r B r_A≤r_B rArB,所以上式意味着 r a n k ( A B ) ≤ m i n r A , r B rank(AB)≤min{r_A,r_B} rank(AB)minrA,rB

类似地,令 r A ≥ r B r_A≥r_B rArB,这意味着 B ≤ p _B≤p Bp r B ≤ q r_B≤q rBq
假定存在 q × q q\times q q×q初等变换矩阵 U U U n × n n\times n n×n初等变换矩阵 V V V使得
U B V = D = [ I r B O O O ] 或 B V = U − 1 [ I r B O O O ] UBV=D=\left[ \begin{matrix} I_{r_B} & O \\ O & O \end{matrix} \right] 或 BV=U^{-1} \left[ \begin{matrix} I_{r_B} & O \\ O & O \end{matrix} \right] UBV=D=[IrBOOO]BV=U1[IrBOOO]
用矩阵 A A A左乘第二式两边,则 p × q p\times q p×q矩阵 A U − 1 AU^{-1} AU1可以分块为 [ T p x r B , S p x ( q − r B ) ] [T_{pxr_B},S_{px(q-r_B)}] [TpxrB,Spx(qrB)],使得
A B V = A U − 1 [ I r B O O O ] = T p × r B , S p × ( q − r B ) ] [ I r B O O O ] = [ T p × r B , O ] ABV=AU^{-1}\left[ \begin{matrix} I_{r_B} & O \\ O & O \end{matrix} \right] =T_{p\times r_B},S_{p\times (q-r_B)}] \left[ \begin{matrix} I_{r_B} & O \\ O & O \end{matrix} \right] =[T_{p\times r_B,O}] ABV=AU1[IrBOOO]=Tp×rB,Sp×(qrB)][IrBOOO]=[Tp×rB,O]
由于 V V V是一系列初等变换矩阵的乘积,它不改变矩阵 A B AB AB的秩,故
r a n k ( A B V ) ≤ r a n k ( A B ) = r a n k [ T p x r B ] ≤ r B rank(ABV)≤rank(AB)=rank[T_{pxr_B}]≤r_B rank(ABV)rank(AB)=rank[TpxrB]rB
由于假定 r A ≥ r B r_A≥r_B rArB,所以上式意味着 r a n k ( A B ) ≤ m i n { r A , r B } rank(AB)≤min\{r_A,r_B\} rank(AB)min{rA,rB}。这就证明了本定理。

引理1
m × n m\times n m×n矩阵 A A A左乘 m × m m\times m m×m非奇异矩阵 P P P或者右乘 n × n n\times n n×n非奇异矩阵 Q Q Q,将不改变 A A A的秩。

证明
由于 m × m m\times m m×m矩阵 P P P非奇异,即 r a n k ( P ) = m rank(P)=m rank(P)=m,故 r a n k ( A ) ≤ r a n k ( P ) rank(A)≤rank(P) rank(A)rank(P)。令 M = P A M=PA M=PA,则根据定理1 r a n k ( M ) ≤ r a n k ( A ) rank(M)≤rank(A) rank(M)rank(A)
另一方面,由 A = P − 1 M A=P^{-1}M A=P1M定理1又有 r a n k ( A ) ≤ r a n k ( M ) rank(A)≤rank(M) rank(A)rank(M)。于是, r a n k ( A ) = r a n k ( M ) = r a n k ( P A ) rank(A)=rank(M)=rank(PA) rank(A)=rank(M)=rank(PA)

类似地,可以证明 r a n k ( A ) = r a n k ( A Q ) rank(A)=rank(AQ) rank(A)=rank(AQ)

特别地,若 p × m p\times m p×m矩阵 P P P具有满列秩 n × q n\times q n×q矩阵 Q Q Q具有满行秩,即 r a n k ( P ) = m rank(P)=m rank(P)=m r a n k ( Q ) = n rank(Q)=n rank(Q)=n,则 r a n k ( P A ) = r a n k ( A ) rank(PA)=rank(A) rank(PA)=rank(A) r a n k ( A Q ) = r a n k ( A ) rank(AQ)=rank(A) rank(AQ)=rank(A)

引理2
r a n k [ A , B ] ≤ r a n k ( A ) + r a n k ( B ) rank[A,B]≤rank(A)+rank(B) rank[A,B]rank(A)+rank(B)

证明
r a n k [ A , B ] ≤ 矩阵 [ A , B ] 的线性无关列数 rank[A,B]≤矩阵[A,B]的线性无关列数 rank[A,B]矩阵[A,B]的线性无关列数$
≤ 矩阵 A 的线性无关列数 + 矩阵 B 的线性无关列数 ≤矩阵A的线性无关列数+矩阵B的线性无关列数 矩阵A的线性无关列数+矩阵B的线性无关列数
≤ r a n k ( A ) + r a n k ( B ) ≤rank(A)+rank(B) rank(A)+rank(B)
即引理得证。

引理3
r a n k ( A + B ) ≤ r a n k [ A , B ] ≤ r a n k ( A ) + r a n k ( B ) rank(A+B)≤rank[A,B]≤rank(A)+rank(B) rank(A+B)rank[A,B]rank(A)+rank(B)
证明
对矩阵 A + B = [ A , B ] [ I I ] A+B=[A,B]\left[ \begin{matrix} I \\ I \end{matrix} \right] A+B=[A,B][II]应用定理1,则有 r a n k ( A + B ) ≤ r a n k [ A , B ] rank(A+B)≤rank[A,B] rank(A+B)rank[A,B]

引理4
对于 m × n m\times n m×n矩阵 A A A n × q n\times q n×q矩阵 B B B,秩不等式 r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n rank(AB)≥rank(A)+ rank(B)-n rank(AB)rank(A)+rank(B)n成立。
证明
r A = r a n k ( A ) r_A=rank(A) rA=rank(A),且 m × m m\times m m×m矩阵 P P P n × n n\times n n×n矩阵 Q Q Q是适当的初等变换矩阵,使得 P A Q = [ I r A O O O ] PAQ=\left[ \begin{matrix} I_{r_A} & O \\ O & O \end{matrix} \right] PAQ=[IrAOOO]。定义 X = P − 1 [ O O O I n − r A ] Q − 1 X=P^{-1}\left[ \begin{matrix} O & O \\ O & I_{n-r_A} \end{matrix} \right] Q^{-1} X=P1[OOOInrA]Q1,则 r a n k ( x ) = n − r A rank(x)=n-r_A rank(x)=nrA A + X = P − 1 Q − 1 A+X=P^{-1}Q^{-1} A+X=P1Q1。于是,根据引理1得
r a n k ( B ) = r a n k ( P − 1 Q − 1 B ) = r a n k ( A B + X B ) rank(B) = rank(P^{-1}Q^{-1}B)=rank(AB + XB) rank(B)=rank(P1Q1B)=rank(AB+XB)
≤ r a n k ( A B ) + r a n k ( X B ) ≤rank(AB)+rank(XB) rank(AB)+rank(XB)
< r a n k ( A B ) + r a n k ( X ) ( 因为 r a n k ( X B ) ≤ r a n k ( X ) ) <rank(AB)+rank(X)(因为rank(XB)≤rank(X)) <rank(AB)+rank(X)(因为rank(XB)rank(X))
≤ r a n k ( A B ) + n − r A ≤rank(AB)+n-r_A rank(AB)+nrA
即有 r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n rank(AB)≥rank(A)+rank(B)-n rank(AB)rank(A)+rank(B)n

2.秩的性质

(1)秩是一个正整数。
(2)秩等于或小于矩阵的行数或列数。
(3)当 n × n n\times n n×n矩阵 A A A的秩等于 n n n时,则A是非奇异矩阵,或称A满秩(full rank)。
(4)如果 r a n k ( A m × n ) < m i n m , n rank(A_{m\times n)}<min{m,n} rank(Am×n)<minm,n,则称A是秩亏缺的。一个秩亏缺的正方矩阵称为奇异矩阵。
(5)若 r a n k ( A m × n ) = m ( < n ) rank(A_{m\times n})=m(<n) rank(Am×n)=m(<n),则称矩阵 A A A具有满行秩(full row rank)。
(6)若 r a n k ( A m × n ) = n ( < m ) rank(A_{m\times n})=n(<m) rank(Am×n)=n(<m),则称矩阵A具有满列秩(full column rank)。
(7)任何矩阵 A A A左乘满列秩矩阵或者右乘满行秩矩阵后,矩阵A的秩保持不变。
(8)当矩阵的秩 r a n k ( A m × n ) = r ≠ 0 rank(A_{m\times n})=r≠0 rank(Am×n)=r=0时,至少存在一个 r × r r\times r r×r子矩阵 X r × r X_{r\times r} Xr×r满秩或非奇异。即是说,矩阵 A m × n A_{m\times n} Am×n可以分块为
A m × n = [ X r × r Y r × ( n − r ) Z ( m − r ) × r W ( m − r ) × ( n − r ) ] A_{m\times n}= \left[ \begin{matrix} X_{r\times r} & Y_{r\times (n-r)} \\ Z_{(m-r)\times r} & W_{(m-r)\times (n-r)} \end{matrix} \right] Am×n=[Xr×rZ(mr)×rYr×(nr)W(mr)×(nr)]
式中, X r × r X_{r\times r} Xr×r非奇异。

3.关于秩的等式

(1)若 A ∈ C m × n A\in C^{m\times n} ACm×n,则 r a n k ( A H ) = r a n k ( A T ) = r a n k ( A ∗ ) = r a n k ( A ) rank(A^H)=rank(A^T)=rank(A^*)=rank(A) rank(AH)=rank(AT)=rank(A)=rank(A)
(2)若 A ∈ C m × n A\in C^{m\times n} ACm×n c ≠ 0 c≠0 c=0,则 r a n k ( c A ) = r a n k ( A ) rank(cA)=rank(A) rank(cA)=rank(A)
(3)若 A ∈ C m × n A\in C^{m\times n} ACm×n C ∈ C n × n C \in C^{n\times n} CCn×n均非奇异,则对于任一矩阵 B ∈ C m × n B\in C^{m\times n} BCm×n r a n k ( A B ) = r a n k ( B ) = r a n k ( B C ) = r a n k ( A B C ) rank(AB)=rank(B)=rank(BC)=rank(ABC) rank(AB)=rank(B)=rank(BC)=rank(ABC)。即是说,矩阵 B B B左乘与(或)右乘一个非奇异矩阵后, B B B的秩保持不变。
(4)如果 A , B ∈ C m × n A,B\in C^{m\times n} A,BCm×n,则 r a n k ( A ) = r a n k ( B ) rank(A)=rank(B) rank(A)=rank(B)当且仅当存在非奇异矩阵 X ∈ C m × m X\in C^{m\times m} XCm×m Y ∈ C n × n Y\in C^{n\times n} YCn×n使得 B = X A Y B=XAY B=XAY
(5)若 A ∈ C m × n A\in C^{m\times n} ACm×n,则
r a n k ( A A T ) = r a n k ( A T A ) − r a n k ( A ) rank(AA^T)=rank(A^TA)-rank(A) rank(AAT)=rank(ATA)rank(A)
r a n k ( A A H ) = r a n k ( A H A ) = r a n k ( A ) rank(AA^H)=rank(A^HA)=rank(A) rank(AAH)=rank(AHA)=rank(A)
(6)若 A ∈ C m × m A\in C^{m\times m} ACm×m,则
r a n k ( A ) = m ⇔ d e t ( A ) ≠ 0 ⇔ A 非奇异 rank(A)=m \Leftrightarrow det(A)≠0\Leftrightarrow A非奇异 rank(A)=mdet(A)=0A非奇异
(7)若 m × m m\times m m×m矩阵 A A A非奇异,且 B ∈ C m × n B\in C^{m\times n} BCm×n C ∈ C n × n C\in C^{n\times n} CCn×n D ∈ C m × n D\in C^{m\times n} DCm×n
[ A B C D ] = m ⇔ D = C A − 1 B \left[ \begin{matrix} A & B \\ C & D \end{matrix} \right]=m \Leftrightarrow D=CA^{-1}B [ACBD]=mD=CA1B

4.关于秩的不等式

(1)对于任意 m × n m\times n m×n矩阵 A A A均有 r a n k ( A ) ≤ m i n m , n rank(A)≤min{m,n} rank(A)minmn
(2)若 A , B ∈ C m x n A,B\in C^{mxn} A,BCmxn,则 r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) rank(A+B)≤rank(A)+rank(B) rank(A+B)rank(A)+rank(B)
(3)若 A ∈ C m × k A\in C^{m\times k} ACm×k B ∈ C k × n B\in C^{k\times n} BCk×n,则
r a n k ( A ) + r a n k ( B ) − k ≤ r a n k ( A B ) ≤ m i n r a n k ( A ) , r a n k ( B ) rank(A)+rank(B)-k≤rank(AB)≤min{rank(A),rank(B)} rank(A)+rank(B)krank(AB)minrank(A),rank(B)
(4)如果从任意矩阵中删去某些行与(或)某些列,则所得子矩阵的秩不可能大于原矩阵的秩。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 矩阵分析应用是一门重要的数学学科,在今天的数学和工程技术中得到广泛应用。《矩阵分析应用贤达教授著是一本优秀的教材,在教学和科研中受到了众多学生和教师的赞誉。这本书主要涵盖了线性代数矩阵理论、线性方程组和特征值问题等知识点,对工程应用和科学研究具有重要意义。 本书内容丰富,其中重点讲解了矩阵的基本概念、性质及其在代数、分析中的应用。作者采用了清晰易懂的语言,结合大量实例和图表,让读者能够更好地掌握矩阵分析及其应用技术。书中还包含了很多练习题和习题解答,有助于读者巩固所学知识,提高分析问题的能力。 总而言之,《矩阵分析应用贤达教授著是一本优秀的教材,它深入浅出地讲解了矩阵分析的基础理论和实际应用。此外,在读这本书的过程中,还能够提高对数学的兴趣和理解能力,提高数学思维水平,对于从事工程技术和科学研究的人员而言,这都是非常有益的。 ### 回答2: 《矩阵分析应用》是贤达编写的一本介绍矩阵理论及其应用的经典教材,该书内容丰富、深入浅出,涵盖了线性代数、特征值、特征向量、对称矩阵、正定矩阵等多个主题。 该书第一章介绍了线性代数的基本概念和运算法则,如矩阵乘法、矩阵转置、矩阵求逆等。第二章讲述了向量空间、线性变换和矩阵的几何意义,为后续章节奠定了基础。 第三章介绍了矩阵的特征值和特征向量,以及它们在物理、化学、工程等领域中的应用。第四章深入讨论了对称矩阵和正定矩阵,分别介绍了它们的性质和主要应用,如优化问题、椭圆偏微分方程的求解等。 除此之外,该书还包括了部分特殊矩阵的性质和应用,如对角矩阵、三角矩阵矩阵的迹等。此外,作者还介绍了各种矩阵分解的方法,并详细说明了它们在科学计算中的重要性和应用。 总的来说,《矩阵分析应用》涉及了广泛的知识点,对于学习和研究矩阵理论及其应用的人士来说,是一本不可多得的杰作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值