矩阵分析与应用+张贤达

1. 矩阵微分的常用法则

A , B A,B A,B为常数矩阵,并且 U , V , W , X U,V,W,X U,V,W,X为矩阵函数。下面汇总了矩阵微分的常用法则
(1)常数矩阵的微分矩阵为零矩阵,即
d A = O dA=O dA=O
(2)常数 α \alpha α与矩阵函数 U U U的乘积的微分矩阵,即
d ( α U ) = α d U d(\alpha U)=\alpha dU d(αU)=αdU
(3)矩阵转置的微分矩阵等于原矩阵的微分矩阵的转置,即
d ( U T ) = ( d U ) T d(U^T)=(dU)^T d(UT)=(dU)T
(4)两个矩阵函数的和(差)的微分矩阵为
d ( U + V ) = d U ± d V d(U+V)=dU±dV d(U+V)=dU±dV
(5)常数矩阵与矩阵的数乘积的微分矩阵为
d ( A X B ) = A ( d X ) B d(AXB)=A(dX)B d(AXB)=A(dX)B
(6)矩阵函数乘积的微分矩阵为
d ( U V ) = ( d U ) V + U ( d V ) d(UV)=(dU)V+U(dV) d(UV)=(dU)V+U(dV)
d ( U V W ) = ( d U ) V W + U ( d V ) W + U V ( d W ) d(UVW)=(dU)VW+U(dV)W+UV(dW) d(UVW)=(dU)VW+U(dV)W+UV(dW)
特别地,若 A A A为常数矩阵,则
d ( X A X T ) = ( d X ) A X T + X A ( d X ) T d(XAX^T)=(dX)AX^T+XA(dX)^T d(XAXT)=(dX)AXT+XA(dX)T
d ( X T A X ) = ( d X ) T A X + X T A d X d(X^TAX)=(dX)^TAX+X^TAdX d(XTAX)=(dX)TAX+XTAdX
(7)矩阵函数的Kronecker积的微分矩阵为
d ( U ⊗ V ) = ( d U ) ⊗ V + U ⊗ d V d(U\otimes V)=(dU)\otimes V+U\otimes dV d(UV)=(dU)V+UdV
(8)矩阵函数的Hadamard积的微分矩阵,为
d ( U ⊙ V ) = ( d U ) ⊙ V + U ⊙ d V d(U\odot V)=(dU)\odot V+U\odot dV d(UV)=(dU)V+UdV
(9)向量化函数 v e c ( U ) vec(U) vec(U)的微分矩阵等于 U U U的微分矩阵的向量化函数,即
d ( v e c ( U ) ) = v e c ( d U ) d(vec(U))= vec(dU) d(vec(U))=vec(dU)
(10)行列式的微分为
d ∣ X ∣ = ∣ X ∣ t r ( X − 1 d X ) d|X|=|X|tr(X^{-1}dX) dX=Xtr(X1dX)
(11)矩阵 U U U的迹的微分 d ( t r U ) d(trU) d(trU)等于微分矩阵 d U dU dU的迹 t r ( d U ) tr(dU) tr(dU),即有
d ( t r ( U ) ) = t r ( d U ) d(tr(U))=tr(dU) d(tr(U))=tr(dU)
d ( t r ( X T X ) ) = 2 t r ( X T d X ) d(tr(X^TX))=2tr(X^TdX) d(tr(XTX))=2tr(XTdX)
(12)逆矩阵的微分矩阵为
d ( X − 1 ) = − X − 1 ( d X ) X − 1 d(X^{-1})=-X^{-1}(dX)X^{-1} d(X1)=X1(dX)X1
(13)Moore-Penrose逆矩阵的微分矩阵为
d ( X + ) = − X + ( d X ) X + + X + ( X + ) T ( d X T ) ( I − X X + ) + ( I − X + X ) ( d X T ) ( X + ) T X + d(X^+)=-X^+(dX)X^++X^+(X^+)T(dX^T)(I-XX^+)+(I-X^+X)(dX^T)(X^+)^TX^+ d(X+)=X+(dX)X++X+(X+)T(dXT)(IXX+)+(IX+X)(dXT)(X+)TX+
d ( X + X ) = X + ( d X ) ( I − X + X ) + ( X + ( d X ) ( I − X + X ) ) T d(X^+X)=X^+(dX)(I-X^+X)+(X^+(dX)(I-X^+X))^T d(X+X)=X+(dX)(IX+X)+(X+(dX)(IX+X))T
d ( X X + ) = ( I − X X + ) ( d X ) X + + ( ( I − X X + ) ( d X ) X + ) T d(XX^+)=(I-XX^+)(dX)X^++((I-XX^+)(dX)X^+)^T d(XX+)=(IXX+)(dX)X++((IXX+)(dX)X+)T
(14)矩阵对数的微分矩阵为
d l o g X = X − 1 d X dlogX=X^{-1}dX dlogX=X1dX
d l o g ( X T A X ) = X T A X − 1 [ ( d X ) T A X + X T A d X ] dlog(X^TAX)=X^TAX^{-1}[(dX)^TAX+X^TAdX] dlog(XTAX)=XTAX1[(dX)TAX+XTAdX]

例5.3.10
考虑例5.1.7的CDMA系统中,仍然共有K个用户在通信,但每个用户的扩频波形向量变成复向量 s k ( t ) s_k(t) sk(t),接收信号向量 y y y也为复向量。此时,设计多用户检测器 M M M的目标函数变为
J ( M ) = E { ∣ ∣ b − M y ∣ ∣ 2 2 } J(M)=E\{||b-My||_2^2\} J(M)=E{∣∣bMy22}
= t r ( c o v ( b − M y ) ) =tr(cov(b-My)) =tr(cov(bMy))
= t r ( I ) + t r ( M ( R A 2 R + σ 2 R ) M H ) − t r ( A R M H ) − t r ( M R A ) =tr(I)+tr(M(RA^2R+\sigma^2R)M^H)-tr(ARM^H)-tr(MRA) =tr(I)+tr(M(RA2R+σ2R)MH)tr(ARMH)tr(MRA)
易求出
∂ J ( M ) ∂ M ∗ = M ( R A 2 R + σ 2 R ) − A R \frac{\partial J(M)}{\partial M^*}=M(RA^2R+\sigma^2R)-AR MJ(M)=M(RA2R+σ2R)AR
令其等于零,并假定 R R R非奇异,立即有
M = A ( R A 2 + σ 2 I ) − 1 M=A(RA^2+\sigma^2I)^{-1} M=A(RA2+σ2I)1
这里的检测器为复矩阵。

2. 矩阵的奇异值分解

A ∈ R m × n A\in R_{m\times n} ARm×n(或 C m × n C_{m\times n} Cm×n),则存在正交(或西)矩阵 U ∈ R m × m U\in R_{m\times m} URm×m(或 C m × m C_{m\times m} Cm×m)和 V ∈ R n × n V\in R_{n\times n} VRn×n(或 C n × n C_{n\times n} Cn×n)使得
A = U Σ V T ( 或 U Σ V H ) A=U\Sigma V^T(或U\Sigma V^H) A=UΣVT(UΣVH)
式中
Σ = [ Σ 1 O O O ] \Sigma= \begin{bmatrix} \Sigma_1&O\\ O&O \end{bmatrix} Σ=[Σ1OOO]
Σ 1 = d i a g ( σ 1 , σ 2 , … , σ r ) \Sigma_1=diag(\sigma_1,\sigma_2,…,\sigma_r) Σ1=diag(σ1,σ2,,σr),其对角元素按照顺序
σ 1 ≥ σ 2 ≥ … ≥ σ r > 0 , r = r a n k ( A ) \sigma_1≥\sigma_2≥…≥\sigma_r > 0, r=rank(A) σ1σ2σr>0,r=rank(A)
排列。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 矩阵分析应用是一门重要的数学学科,在今天的数学和工程技术中得到广泛应用。《矩阵分析应用贤达教授著是一本优秀的教材,在教学和科研中受到了众多学生和教师的赞誉。这本书主要涵盖了线性代数矩阵理论、线性方程组和特征值问题等知识点,对工程应用和科学研究具有重要意义。 本书内容丰富,其中重点讲解了矩阵的基本概念、性质及其在代数、分析中的应用。作者采用了清晰易懂的语言,结合大量实例和图表,让读者能够更好地掌握矩阵分析及其应用技术。书中还包含了很多练习题和习题解答,有助于读者巩固所学知识,提高分析问题的能力。 总而言之,《矩阵分析应用贤达教授著是一本优秀的教材,它深入浅出地讲解了矩阵分析的基础理论和实际应用。此外,在读这本书的过程中,还能够提高对数学的兴趣和理解能力,提高数学思维水平,对于从事工程技术和科学研究的人员而言,这都是非常有益的。 ### 回答2: 《矩阵分析应用》是贤达编写的一本介绍矩阵理论及其应用的经典教材,该书内容丰富、深入浅出,涵盖了线性代数、特征值、特征向量、对称矩阵、正定矩阵等多个主题。 该书第一章介绍了线性代数的基本概念和运算法则,如矩阵乘法、矩阵转置、矩阵等。第二章讲述了向量空间、线性变换和矩阵的几何意义,为后续章节奠定了基础。 第三章介绍了矩阵的特征值和特征向量,以及它们在物理、化学、工程等领域中的应用。第四章深入讨论了对称矩阵和正定矩阵,分别介绍了它们的性质和主要应用,如优化问题、椭圆偏微分方程的求解等。 除此之外,该书还包括了部分特殊矩阵的性质和应用,如对角矩阵、三角矩阵矩阵的迹等。此外,作者还介绍了各种矩阵分解的方法,并详细说明了它们在科学计算中的重要性和应用。 总的来说,《矩阵分析应用》涉及了广泛的知识点,对于学习和研究矩阵理论及其应用的人士来说,是一本不可多得的杰作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值