MNIST数据集
from tensorflow.contrib.layers import fully_connected
import tensorflow as tf
n_steps = 28
n_inputs = 28
n_neurons = 150
n_outputs = 10
learning_rate = 0.001
# 占位符
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.int32, [None])
# RNN单元
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons) # RNN基本单元,num_units为单元个数
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
# 全连接
logits = fully_connected(states, n_outputs, activation_fn=None)
# 损失函数及优化器
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss)
# 准确率
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
# 初始化
init = tf.global_variables_initializer()
from tensorflow.examples

最低0.47元/天 解锁文章
452

被折叠的 条评论
为什么被折叠?



