模式识别(九)神经网络(RNN)识别MNIST和细胞数据集

MNIST数据集

from tensorflow.contrib.layers import fully_connected
import tensorflow as tf

n_steps = 28
n_inputs = 28
n_neurons = 150
n_outputs = 10
learning_rate = 0.001
# 占位符
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.int32, [None])
# RNN单元
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)  # RNN基本单元,num_units为单元个数
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
# 全连接
logits = fully_connected(states, n_outputs, activation_fn=None)
# 损失函数及优化器
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss)
# 准确率
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
# 初始化
init = tf.global_variables_initializer()

from tensorflow.examples
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值