目录
1.padding的概念
为什么padding?
卷积操作存在的两个问题:
- 图像越来越小
- 图像边界信息丢失,即有些图像角落和边界的信息发挥作用较少
因此需要padding
- padding的操作就是在图像块的周围加上格子,从而使得图像经过卷积过后大小不会变化,这种操作是使得图像的边缘数据也能被利用到,这样才能更好的扩张整张图像的边缘特征。
- padding是在卷积之前补0。
- padding补0的策略是四周都补;如果padding=1,那么就会在原来输入层的基础上,上下左右各补一行。
- padding的用途:保持边界信息;可以对有差异的图片进行补齐,使得图像的输入大小一致。
2.感受野的概念
在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小(注意是对应输入层,而不是前一层),被称作感受野。通常来说,大感受野的效果要比小感受野的效果更好。由公式可见,stride越大,感受野越大。但是过大的stride会使feature map保留的信息变少。因此,在减少stride的情况下,如何增大感受野或使其保持不变,称为分割任务中的一大问题。
如下图所示,layer2的感受野相对于输入层layer1为3×3;layer3的感受野相对于输入层layer1为5×5。
3.图片大小不变,padding多少?
这里有一个问题:假设输入图像的分辨率为H×W,卷积核为k×k,stride为1,问若要保持卷积前后分辨率大小不变,padding应该设为多少?
先给出答案:padding = (k-1)// 2
那这个答案是怎么来的呢?
我们知道卷积后图片分辨率大小的计算公式
我们使,则得出
4.空洞率对应的卷积核尺寸及其感受野大小
感受野及卷积核的计算公式如下所示:
我们将上图三个空洞率分别1,2,4的卷积核大小及感受野大小计算一下(绿色部分为感受野大小,红点为卷积核大小):
左图(rate = 1):
- rate = 1的卷积核即为标准卷积,卷积核尺寸为3×3,感受域为3×3
中图(rate = 2):
- 卷积核大小为:
- 感受野大小为:
右图(rate = 4):
- 卷积核大小为:
- 感受野大小为:
5.空洞卷积后图片大小变化
标准卷积图片分辨率计算公式:
而空洞卷积只需要将K替换为
所以空洞卷积图片分辨率计算公式: