损失函数、代价函数和目标函数的区别

目录

一、概念

二、常见的代价函数

1.平方误差损失函数

2.Logit损失函数(Logistic 回归)

3.Hinge损失函数(SVM)

4. 指数损失函数

5.感知机损失函数(L1 margin cost)


一、概念

损失函数(Loss Function )是定义在单个样本上的,算的是一个样本的误差。

代价函数(Cost Function )是定义在整个训练集上的,是所有样本误差的平均,也就是损失函数的平均。

目标函数(Object Function)定义为:最终需要优化的函数。等于经验风险+结构风险(也就是Cost Function + 正则化项)。

PS:关于目标函数和代价函数的区别还有一种通俗的区别:目标函数是最大化或者最小化,而代价函数是最小化。
 

举个例子解释一下:(图片来自Andrew Ng Machine Learning公开课视频)

上面三个图的函数依次为f_{1}(x)f_{2}(x),f_{3}(x) 。我们是想用这三个函数分别来拟合Price,Price的真实值记为Y

我们给定x,这三个函数都会输出一个f(X) ,这个输出的f(X) 与真实值Y 可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度,比如: ,这个函数就称为损失函数(loss function),或者叫代价函数(cost function)(有的地方将损失函数和代价函数没有细分也就是两者等同的)。损失函数越小,就代表模型拟合的越好。

那是不是我们的目标就只是让loss function越小越好呢?还不是。

这个时候还有一个概念叫风险函数(risk function)。风险函数是损失函数的期望,这是由于我们输入输出的(X,Y) 遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集, f(X)关于训练集的平均损失称作经验风险(empirical risk),即 ,所以我们的目标就是最小化 ,称为经验风险最小化。

 如果到这一步就完了的话,那我们看上面的图,那肯定是最右面的f_{3}(x) 的经验风险函数最小了,因为它对历史的数据拟合的最好嘛。但是我们从图上来看f_{3}(x)肯定不是最好的,因为它过度学习历史数据,导致它在真正预测时效果会很不好,这种情况称为过拟合(over-fitting)。

为什么会造成这种结果?大白话说就是它的函数太复杂了,都有四次方了,这就引出了下面的概念,我们不仅要让经验风险尽量小,还要让结构风险尽量小。。这个时候就定义了一个函数J(f) ,这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有 L_{1},L_{2} 范数。

 到这一步我们就可以说我们最终的优化函数是: ,即最优化经验风险和结构风险,而这个函数就被称为目标函数。

 结合上面的例子来分析:最左面的 f_{1}(x)结构风险最小(模型结构最简单),但是经验风险最大(对历史数据拟合的最差);最右面的 f_{3}(x)经验风险最小(对历史数据拟合的最好),但是结构风险最大(模型结构最复杂);而f_{2}(x) 达到了二者的良好平衡,最适合用来预测未知数据集。

 二、常见的代价函数

常见的损失误差有五种:
1.  铰链损失(Hinge Loss):主要用于支持向量机(SVM) 中;
2. 交叉熵损失 (Cross Entropy Loss,Softmax Loss ):用于Logistic 回归与Softmax 分类中;
3. 平方损失(Square Loss):主要是最小二乘法(OLS)中;
4. 指数损失(Exponential Loss) :主要用于Adaboost 集成学习算法中;
5. 其他损失(如0-1损失,绝对值损失)

1.平方误差损失函数

最小二乘法是线性回归的一种方法,它将回归的问题转化为了凸优化的问题。最小二乘法的基本原则是:最优拟合曲线应该使得所有点到回归直线的距离和最小。通常用欧几里得距离进行距离的度量。平方损失的损失函数为:

 

 损失函数表达式:

 分类实例:

优点:容易优化(一阶导数连续)

缺点:对outlier点很敏感(因为惩罚是指数增长的,左图的两个outlier将分类面强行拉到左边,得不到最优的分类面)

2.Logit损失函数(Logistic 回归)

逻辑斯特回归的损失函数就是对数损失函数,在逻辑斯特回归的推导中,它假设样本服从伯努利分布(0-1)分布,然后求得满足该分布的似然函数,接着用对数求极值。逻辑斯特回归并没有求对数似然函数的最大值,而是把极大化当做一个思想,进而推导它的风险函数为最小化的负的似然函数。从损失函数的角度上,它就成为了log损失函数。

5

损失函数表达式: 

优点:稳定的分类面,严格凸,且二阶导数连续

3.Hinge损失函数(SVM)

minJ(w)=1n∑i=1nH(yif(xi,w)),whereH(t)={−t+10t<1t≥0
优点:稳定的分类面,凸函数。对分对的但又不是很对的样本也进行惩罚(0-1之间),可以极大化分类间隔。

4. 指数损失函数

AdaBoost就是一指数损失函数为损失函数的。
指数损失函数的标准形式:

5.感知机损失函数(L1 margin cost)

3

损失函数:

minJ(w)=1n∑i=1nH(yif(xi,w)),whereH(t)={−t0t<0t≥0
在t=0处不连续,所以不可导,但是可以求次梯度(导数)

 4

优点:稳定的分类面,次梯度可导

缺点:二阶不可导,有时候不存在唯一解

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Billie使劲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值