深度学习
文章平均质量分 81
liuyu进阶
读研小菜鸡
展开
-
YOLOv1解读笔记
You Only Look oncev1解读笔记1.来源:up主尤鱼哥链接:https://www.bilibili.com/video/BV1mp411o7jJ?from=search&seid=13505474129702132955YOLO的全拼是You Only Look Once,顾名思义就是只看一次,把目标区域预测和目标类别预测合二为一,作者将目标检测任务看作目标区域预测和类别预测的回归问题。该方法采用单个神经网络直接预测物品边界和类别概率,实现端到端的物品检测。因此识别性能有了原创 2021-01-31 21:19:23 · 283 阅读 · 1 评论 -
Pytorch学习笔记(深度之眼)(10)之正则化之weight_decay
可视化工具 —— TensorBoardTensorBoard:TensorFlow中强大的可视化工具;支持标量、图像、文本、音频、视频和Embedding等多种数据可视化;在学习TensorBoard之前,先对其运行机制有大概的了解:在python脚本中记录可视化的数据;记录的数据会以event file(事件文件)存放到硬盘中;在终端使用TensorBoard读取event file,TensorBoard在网页端进行可视化...原创 2021-01-01 15:21:40 · 444 阅读 · 0 评论 -
Pytorch学习笔记(深度之眼)(9)之学习率的调整
学习率的作用是控制更新的步伐;Pytorch提供了一个调整学习率的方法——class_LRScheduler主要参数:optimizer:关联的优化器;last_epoch:记录epoch数;base_lrs:记录初始学习率class_LRScheduler(object): def __init__(self,optimizer,last_epoch=1): def get_lr(self): raise NotlmplementedError主要方法:step():更新下一个原创 2020-12-31 15:17:57 · 474 阅读 · 1 评论 -
Pytorch学习笔记(深度之眼)(8)之优化器
1、什么是优化器Pytorch优化器:管理并更新模型中可学习参数的值,使得模型输出更接近真实标签;管理是指优化器管理和修改参数,更新是指优化器的优化策略。优化策略通常采用梯度下降,梯度是一个向量,梯度的方向是使得方向导数最大。2、optimizer的属性优化器基本属性:defaults:优化器超参数;state:参数的缓存,如momentum参数;param_groups:管理的参数组;_step_count:记录更新次数,学习率调整中使用;class Optimizer(Object)原创 2020-12-31 10:19:23 · 248 阅读 · 0 评论 -
Pytorch学习笔记(深度之眼)(8)之损失函数
常用损失函数5、nn.L1Loss6、nn.MSELoss7、nn.SmoothL1Loss8、nn.PoissonNLLLoss9、nn.KLDivLoss10、nn.MarginRankingLoss11、nn.MultiLabelMarginLoss12、nn.softMarginLoss13、nn.MultiLabelSoftMarginLoss14、nn.MultiMarginLoss15、nn.TripleMarginLoss16、nn.HingeEm原创 2020-12-30 09:40:02 · 297 阅读 · 0 评论 -
Pytorch学习笔记(深度之眼)(7)之损失函数
1.损失函数概念现在了解一下Pytorch中的Loss:class _loss(Module): def __init__(self, size_average=None, reduce=None, reduction='mean'): super(_loss,self).__init__() if size_average is not None or reduce is not None: self.reduction = _Reduc原创 2020-12-29 10:07:03 · 482 阅读 · 0 评论 -
Pytorch学习笔记(深度之眼)(6)之权值初始化
1、梯度消失与爆炸上面公式中, H 1是上一层神经元的输出值, W 2的梯度依赖于上一层的输出,如果 H 1 的输出值趋向于零, W 2 的梯度也趋向于零,从而导致梯度消失。如果 H 1 趋向于无穷大,那么 W 2 也趋向于无穷大,从而导致梯度爆炸。从上面我们可以知道,要避免梯度消失或者梯度爆炸,就要严格控制网络输出层的输出值的范围,也就是每一层网络的输出值不能太大也不能太小。从公式推导可以发现,第一个隐藏层的输出值的方差变为n,而输入数据的方差为1,经过一个网络层的前向传播,数据的方差就扩大原创 2020-12-28 16:58:49 · 292 阅读 · 0 评论 -
Pytorch学习笔记(深度之眼)(5)之池化、线性、激活函数层
1、池化层——Pooling Layernn.MaxPool2dnn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)kernel_size:池化核尺寸;stride:步长;padding:填充个数;dilation:池化核间隔大小;ceil_mode:池化过程中有一个原创 2020-12-28 11:01:50 · 539 阅读 · 0 评论 -
Pytorch学习笔记(深度之眼)(4)之模型容器
1.容器.Containersnn.Sequential是nn.module的容器,用于按顺序包装一组网络层。codeimport torch.nn as nnclass LeNetSequential(nn.Module): def __init__(self, classes): super(LeNetSequential, self).__init__() self.features = nn.Sequential( nn.原创 2020-12-28 09:20:16 · 161 阅读 · 0 评论 -
Pytorch为什么总要设置随机种子
Pytorch为什么总要设置随机种子在pytorch中总能看到以 第一行有个设置随机种子的函数?它到底有啥作用?def set_seed(seed=1): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed)参考博客:https://blog.csdn.net/qq_24224067/article/details/1064510641原创 2020-12-27 15:11:45 · 13433 阅读 · 1 评论 -
Pytorch学习笔记(深度之眼)(3)之网络模型
网络模型步骤:原创 2020-12-25 21:08:43 · 382 阅读 · 0 评论 -
花书《深度学习》学习笔记(5)
1.训练加速(1)基于数据的并行1.Model Average(模型平均)2.SSGD(同步随机梯度下降)3.ASGD (异步随机梯度下降)(2)基于模型的并行原创 2020-12-24 11:32:45 · 159 阅读 · 0 评论 -
花书《深度学习》学习笔记(4)
常用CNN1.LeNet原创 2020-12-23 22:24:31 · 224 阅读 · 0 评论 -
花书《深度学习》学习笔记(3)
1.卷积网络原创 2020-12-22 20:29:50 · 136 阅读 · 0 评论 -
花书《深度学习》学习笔记(2)
1.前后向传播2.正则化3.数据集增强原创 2020-12-22 15:06:49 · 105 阅读 · 0 评论 -
花书《深度学习》学习笔记(1)
1.深度前馈网络➢理论上说单隐层神经网络可以逼近任何连续函数(只要隐层的神经元个数足够多)。➢虽然从数学.上看表达能力一致,但是多隐藏层的神经网络比单隐藏层的神经网络工程效果好很多。➢对于一些分类数据(比如CTR预估里),3层神经网络效果优于2层神经网络,但是如果把层数再不断增加(4,5,6层),对最后结果的帮助就没有那么大的跳变了。➢图像数据比较特殊,是一种深层(多层次)的结构化数据,深层次的卷积神经网络,能够更充分和准确地把这些层级信息表达出来。2.激活函数 3.批量梯度下降4.随原创 2020-12-21 22:25:52 · 242 阅读 · 1 评论 -
Pytorch学习笔记(深度之眼)(2)之DataLoader and Dataset
1.DataLoader and Dataset数据模块又可以细分为 4 个部分:数据收集:样本和标签。数据划分:训练集、验证集和测试集数据读取:对应于PyTorch 的 DataLoader。其中 DataLoader 包括 Sampler 和 DataSet。Sampler 的功能是生成索引, DataSet 是根据生成的索引读取样本以及标签。数据预处理:对应于 PyTorch 的 transforms功能:Dataset 是抽象类,所有自定义的 Dataset 都需要继承该类,原创 2020-12-20 21:20:32 · 402 阅读 · 1 评论 -
Pytorch学习笔记(深度之眼)(1)
1.逻辑回归 机器学习模型训练步骤:原创 2020-12-20 09:52:08 · 259 阅读 · 0 评论 -
计算机中丢失OpenNI2.dll
计算机中丢失OpenNI2.dll在使用PCL点云库时,直接用pcl_mesh_sampling.exe或是pcl_mesh_samplingd.exe文件生成点云.pcd文件时会报错“:无法启动此程序,因为计算机中丢失OpenNI2.dll。尝试重新安装该程序以解决此问题。”的错误。生成.pcd文件的具体做法详见我的上一篇博文:https://blog.csdn.net/m0_45866718/article/details/110263833解决方法(1)第一种方法:将安装路径下OpenN原创 2020-11-28 15:34:03 · 5107 阅读 · 9 评论 -
点云库PCL-3D模型.obj文件生成pcd,pcl点云文件
点云库PCL-3D模型.obj文件生成pcd,pcl点云文件1.VS2019配置PCL1.10.0VS2019配置PCL1.10.0在此不做详细论述,可以参考大神“诺有缸的高飞鸟”的教程,非常完整和详细:https://blog.csdn.net/qq_41102371/article/details/1073129482.三维模型文件生成obj文件(1)使用solidworks中ScanTo3D插件另存为。(2)利用3Dmax保存为obj格式。注意:一定要把同时出现的.mtl文件保存在同一目原创 2020-11-28 12:37:47 · 2821 阅读 · 4 评论 -
斐波那契网格采样(在球面上均匀排列许多点)
经纬度网格和斐波那契网格转载自https://zhuanlan.zhihu.com/p/25988652?group_id=8289636771924910081.问题怎样在球面上「均匀」地排列许多点呢?这是一个很有实际意义的问题。比如我要测量地球上陆地的总面积。如果能在地球表面均匀地取 n 个点,那么我只要简单地数一下其中落在陆地上的点的个数 m,就可以知道陆地面积约占地球总表面积的 m/n 了。注意,按照一定的经纬度间隔,取经纬线的交点是不行的,因为这样取出的点不均匀:两极附近的点比赤道处更密集转载 2020-11-03 09:13:34 · 8434 阅读 · 2 评论