Conditional-DETR 论文解析

Conditional-DETR通过引入conditional cross-attention机制,解决了DETR训练速度慢的问题。与原始DETR相比,Conditional-DETR在Res-50/101上训练速度快6.7倍,而在DC5-R50/101上快10倍。研究发现Conditional-DETR在50个epoch后的表现优于DETR训练500个epoch,证明了其效率优势。
摘要由CSDN通过智能技术生成

论文地址:https://arxiv.org/abs/2108.06152
源码地址:https://github.com/Atten4Vis/ConditionalDETR


1. Abstract

原始的DETR采用Transformer中的Encoder和Decoder结构进行目标检测,获得了可观的结果。在这篇论文中,为了解决DETR的训练速度慢的问题,引入一个conditional cross-attention机制来实现更快的DETR训练。原始的DETR中的coss-ateention module中方极大的依赖于content embeddings来实现4个角点的预测,增加对高质量的content embeddings的需求,并且每个object query的co-attended visual regions可能与查询需要预测的边界框无关。因此,从decoder embeddings中学习一个conditional spatial query,每个cross-head都能够关注一个包含不同区域的visual regions。不需要再浪费太多时间去寻找合适的attnetion regions,加快DETR的训练。实验结果表明,在使用Res-50/101为为backbone时,Conditional DETR相比DETR训练速度快6.7倍;而对于使用DC5-R50

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从现在开始壹并超

你的鼓励,我们就是hxd

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值