backgroundMattingV2的pytorch验证(inference_images.py)

最近的时间花在了backgroundMattingV2上,它是前段时间比较火的AI抠图开源项目,网上关于他的实践代码较少,一点点把自己的实践过程记录一下。

下图是相应的配置。

--model-type 选择mattingbase或者mattingrefine,bacbone选择'resnet101', 'resnet50', 'mobilenetv2'其一,--model-checkpoint是backbone的预训练权重,(提取码b7wq)注意对应的权重要下载对,代码中的backbone也要改。

backbone_scale: 图像下采样的比例系数,通过指定模型进行下采样的多少,默认是0.25,不能超过0.5

--model-refine-mode是优化区域选择模式:

full : 所以地方都经过regular Conv2d层进行优化。优化整个图像,仅用于调试。

sampling : 仅对错误率最高的几处地方优化,它适用于每帧的计算和内存消耗有固定上限的实时应用。

thresholding :对错误率超过指定阈值的像素区进行优化,动态优化错误超过阈值的所有像素,它适用于质量超过计算速度的图像编辑应

Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.) return torch._C._cuda_getDeviceCount() > 0 FlashAttention is not available on this device. Using scaled_dot_product_attention instead. Ultralytics 8.3.63 🚀 Python-3.11.11 torch-2.2.2+cu121 CPU (Intel Core(TM) i7-9750H 2.60GHz) YOLOv12n summary (fused): 352 layers, 2,590,824 parameters, 0 gradients Found https://ultralytics.com/images/bus.jpg locally at bus.jpg Traceback (most recent call last): File "/home/zhangchong/anaconda3/envs/yolov12/bin/yolo", line 8, in <module> sys.exit(entrypoint()) ^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/cfg/__init__.py", line 983, in entrypoint getattr(model, mode)(**overrides) # default args from model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/engine/model.py", line 560, in predict return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/engine/predictor.py", line 188, in predict_cli for _ in gen: # sourcery skip: remove-empty-nested-block, noqa File "/home/zhangchong/anaconda3/envs/yolov12/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 35, in generator_context response = gen.send(None) ^^^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/engine/predictor.py", line 259, in stream_inference preds = self.inference(im, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/engine/predictor.py", line 143, in inference return self.model(im, augment=self.args.augment, visualize=v
最新发布
03-12
<think>好的,我现在需要解决用户提到的两个问题:FlashAttention不可用以及在运行YOLOv12n预测时出现的traceback错误。首先,我应该分步骤分析可能的原因,并参考提供的引用资料来寻找解决方案。 关于FlashAttention不可用的问题,可能的原因包括安装问题或版本不兼容。用户提到的YOLOv5相关引用中,有提到pillow版本过高导致错误,可能需要降级。类似地,FlashAttention可能需要特定版本的PyTorch或CUDA支持。需要检查是否正确安装了FlashAttention,包括依赖项如PyTorch版本、CUDA版本是否匹配。此外,用户可能需要从源码编译安装,或者检查是否有路径问题导致模块无法导入。 接下来处理traceback错误。根据引用[2]和[3],常见的AttributeError或NameError可能是由于模块没有正确安装或函数名称错误。例如,如果错误提示模块没有某个属性,可能是因为安装不完整或版本不对。需要用户提供具体的错误信息,但假设错误类似于模块缺失,可能需要重新安装相关库,或者检查代码中的导入语句是否正确。另外,引用[4]提到pillow版本过高导致的问题,可能需要降级pillow,这也可能适用于其他依赖库。 综合来看,可能的解决步骤包括:1. 确认FlashAttention的安装是否正确,包括检查PyTorch和CUDA版本;2. 根据错误日志调整依赖库的版本;3. 重新安装或编译必要的组件;4. 处理YOLOv12n预测时的具体错误,可能需要检查模型文件或数据路径是否正确。需要用户提供更多错误细节,但基于现有信息,可以给出通用的排查步骤。</think>### 解决FlashAttention不可用及YOLOv12n预测的traceback错误 #### 一、FlashAttention不可用问题 1. **检查环境依赖** FlashAttention需要满足特定版本的PyTorch(≥1.12)和CUDA(≥11.3)。使用以下命令验证版本: ```bash python -c "import torch; print(torch.__version__, torch.version.cuda)" ``` 若版本不匹配,需升级或降级PyTorch: ```bash pip install torch==1.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116 ``` 2. **正确安装FlashAttention** - 通过源码编译安装: ```bash pip install flash-attn --no-build-isolation ``` - 若安装失败,尝试安装预编译版本(需CUDA≥11.6): ```bash pip install flash-attn --upgrade ``` 3. **验证安装** 运行以下Python代码检查是否成功导入: ```python from flash_attn import flash_attention print("FlashAttention available!") ``` 若报错`ImportError`,需检查Python路径或重新安装[^2][^4]。 --- #### 二、YOLOv12n预测的traceback错误 1. **分析错误类型** - **Case 1: AttributeError(模块缺失函数)** 例如:`AttributeError: module 'torch' has no attribute 'some_function` **原因**:PyTorch版本不兼容或函数名称变更。 **解决**:更新PyTorch或修改代码调用方式[^3]。 - **Case 2: Pillow版本冲突** 若错误涉及图像处理模块(如`PIL`),可能因pillow版本过高导致。降级到兼容版本: ```bash pip install pillow==9.5.0 # 示例版本 ``` 2. **检查模型权重和路径** - 确保`--weight`参数指向正确的模型文件(如`yolov12n.pt`),路径无空格或特殊字符。 - 使用绝对路径避免相对路径错误: ```bash python detect.py --source /absolute/path/to/images --weight /absolute/path/to/yolov12n.pt ``` 3. **依赖库版本对齐** YOLOv12n可能依赖特定版本的`ultralytics`库。更新到最新版本: ```bash pip install ultralytics --upgrade ``` --- #### 三、通用排查步骤 1. **查看完整错误日志** 根据报错的具体行号定位问题模块,例如: ``` Traceback (most recent call last): File "detect.py", line 25, in <module> from models import YOLO ImportError: cannot import name 'YOLO' ``` 此类错误需检查`models`目录是否存在或安装`ultralytics`包[^4]。 2. **创建纯净虚拟环境** 使用conda或venv隔离环境: ```bash conda create -n yolov12n_env python=3.8 conda activate yolov12n_env pip install -r requirements.txt # 安装项目依赖 ``` ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值