Background Matting V2 学习

本文详细介绍了背景抠图技术Background Matting V2,涵盖论文方法设计、网络模型和训练策略。通过ResNet-50等模型,实现快速、高分辨率的背景替换。项目提供了数据集、训练权重和推理代码,适用于实时抠图和背景替换应用。
摘要由CSDN通过智能技术生成

论文:

[2012.07810] Real-Time High-Resolution Background Matting (arxiv.org)

GitHub项目源码:GitHub - PeterL1n/BackgroundMattingV2: Real-Time High-Resolution Background Matting

目录

论文学习

 方法设计:

 网络模型:

训练方法:

项目上手

测试数据下载:

测试图片的抠图效果:

训练自己权重文件 :

简单实现背景替换


论文学习

 方法设计:

给定图像 I ,背景图B ,alpha遮罩图\alpha ,前景图 F

则可以在新的背景图B' 合成新的图像I' ,描述为: {I}'=\alpha F+(1-\alpha ){B}'

并且通过求解前景残差:F^{R}=F-I

最后的前景图可以通过:F=max(min(F^{R}+I,1),0)

 网络模型:

网络模型分成两部分:基础网络{G_{base}}^{}和优化网络{G_{refine}}^{}

{G_{base}}^{}:包括三个模块Backbone、ASPP和Decoder。Backbone提供ResNet-50、ResNet-101、MobileNetV2使用。ASPP由3、6和9尺寸的卷积滤波器组成,采用DeepLab-V3构成的编解码网络结构。Decoder则是进行每一步应用双线性上采样构成的解码器网络。输入下采样的图像及相应背景图I_{c}B_{c},得到粗糙的alpha通道图\alpha _{c}、前景残差图 F_{c}^{R}、误差预测图 E_{c}和网络隐藏特征 H_{c}

{G_{refine}}^{}:对 E_{c}中值较大的区域使用H_{c}I , B\alpha _{c}F_{c}^{R}进行优化,生成与原图像相同分辨率的alpha遮罩图\alpha和前景残差图F_{R}

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猪不爱动脑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值