题意:
有n个同心圆,最里面的圆的半径为1,然后往外依次是2,3,4…有m条经过圆心的线和圆相交,形成2 * m个交点,这2m个交点将圆等分,直线和圆,以及直线和直线会形成若干个交点,会得到一个点集,问点集中,任意两点之间的最短距离和是多少?、
输入:
n和m
输出:
距离和
思路:
对于同一个圆上的两个点,肯定就是沿着半径走或沿着圆弧走,肯定取min嘛
对于不同圆上的点,那就是先沿着半径从一个圆上走到另一个圆上,然后就转变成同一个圆上两个点最短距离的问题了 这种方案和直接沿着半径走,先从一个圆上的一点走到圆心,再走到更外面圆上的一个点上相比,取较小值
因为数据范围比较小,所以完全可以三层循环进行暴力
代码实现:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 3e6 + 5;
const double eps = 1e-8;
const double pi = acos(-1.0);
int main(){
//数据范围比较小,完全可以暴力
int n,m;
scanf("%d%d",&n,&m);
double ans = n * (n + 1) * m;//从圆心的交点到其他点的距离
if(m == 1) ans = 0;//m == 1时在圆心处没有交点,ans = 0
for(int i = 1;i <= n;i++){//从内圆到外圆计算
double now = 0;
double len = pi * i / m;//len表示一小段的距离
for(int j = i;j <= n;j++){
now = 0;
now += j - i;//沿直径走的那一段距离
for(int p = 1;p <= m - 1;p++){
double l1 = len * p + (j - i);
double l2 = i + j;
now += min(l1,l2) * 2;//2 * m个点一定是偶数
}
now += i + j;//剩余的对面的一个点
if(i == j){//在一个圆上
ans = ans + now * m;
}
else ans = ans + now * 2 * m;//在不同的圆上
}
}
printf("%.10lf\n",ans);
return 0;
}