基础算法_几何+思维

题意:

有n个同心圆,最里面的圆的半径为1,然后往外依次是2,3,4…有m条经过圆心的线和圆相交,形成2 * m个交点,这2m个交点将圆等分,直线和圆,以及直线和直线会形成若干个交点,会得到一个点集,问点集中,任意两点之间的最短距离和是多少?、

输入:
n和m

输出:
距离和

思路:

对于同一个圆上的两个点,肯定就是沿着半径走或沿着圆弧走,肯定取min嘛
对于不同圆上的点,那就是先沿着半径从一个圆上走到另一个圆上,然后就转变成同一个圆上两个点最短距离的问题了 这种方案和直接沿着半径走,先从一个圆上的一点走到圆心,再走到更外面圆上的一个点上相比,取较小值

因为数据范围比较小,所以完全可以三层循环进行暴力

代码实现:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 3e6 + 5;
const double eps = 1e-8;
const double pi = acos(-1.0);
int main(){
	//数据范围比较小,完全可以暴力
	int n,m;
	scanf("%d%d",&n,&m);
	double ans = n * (n + 1) * m;//从圆心的交点到其他点的距离
	if(m == 1) ans = 0;//m == 1时在圆心处没有交点,ans = 0
	
	for(int i = 1;i <= n;i++){//从内圆到外圆计算
		double now = 0;
		double len = pi * i / m;//len表示一小段的距离
		for(int j = i;j <= n;j++){
			now = 0;
			now += j - i;//沿直径走的那一段距离
			for(int p = 1;p <= m - 1;p++){
				double l1 = len * p + (j - i);
				double l2 = i + j;
				now += min(l1,l2) * 2;//2 * m个点一定是偶数
			}
			now += i + j;//剩余的对面的一个点
			if(i == j){//在一个圆上
				ans = ans + now * m;
			}
			else ans = ans + now * 2 * m;//在不同的圆上
		}
	}
	printf("%.10lf\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值