VAE生成模型学习

VAE模型

公式推导与实现

想要计算 p ( z ∣ x ) p(z|x) p(zx) 即需要计算 p ( x ) p(x) p(x) p ( x ) = ∫ p ( x ∣ z ) p ( z ) p(x)=\int {p(x|z)p(z)} p(x)=p(xz)p(z),计算相当困难。
变分推断:
  通过一个简单的分布 q ( z ∣ x ) q(z|x) q(zx) p ( z ∣ x ) p(z|x) p(zx)进行近似,求q的参数,通过q进行计算。
KL散度:
在这里插入图片描述
在这里插入图片描述

  最小化p和q的KL散度,推理后即最大化 ELBO(证据下界)目标函数(没推出来):
E q ( z ∣ x ) l o g p ( x ∣ z ) − K L ( q ( z ∣ x ) ∣ ∣ p ( z ) ) E_{q(z|x)}logp(x|z)-KL(q(z|x)||p(z)) Eq(zx)logp(xz)KL(q(zx)∣∣p(z))
  第一项为重建的likelyhood,它衡量了样本 x 的重构质量,即通过解码器从潜在变量 z 生成 x 的能力。第二项为q和先验分布p的KL散度,衡量了潜在变量的后验分布与先验分布之间的接近程度。

  • 假设先验p(z)服从正态分布,输出两个向量来描述隐状态分布的均值方差
  • 解码器将通过从这些定义的分布中抽样来生成一个隐向量,并开始重建原始输入。
    但是,在训练模型时,随机抽样操作不可微分,导致反向传播无法对模型进行更新。
  • 解决方法:从单位高斯(均值为0、标准差为1)随机抽样ε,然后将随机抽样的ε乘以隐分布的均值μ,并用隐分布的方差σ对其进行缩放。
    在这里插入图片描述
    反向优化:在这里插入图片描述

模型

  输出为码m(均值)+方差σ(取exp为标准差,为正数),构成一个分布,从标准差中采样一个值(e,相当于噪声),生成一个新的带噪声的码c
c = m + e x p ( σ ) ∗ e c=m+exp(σ)*e c=m+exp(σ)e
在这里插入图片描述

在这里插入图片描述loss约束:
除了重构损失外,还需要满足
在这里插入图片描述
e x p ( σ i ) − ( 1 + σ i ) exp(σi)-(1+σi) exp(σi)(1+σi)图像如下方绿色曲线,使其最小化,即σi趋近于0
在这里插入图片描述

为什么VAE

  AE无法泛化生成能力,从码空间随机采样一个点生成一个值。
在这里插入图片描述

VAE与AE

  在于自编码器(确定性)和可变自编码器(概率性)的区别。在普通的AE中,编码器将输入 x 转换为潜在变量 z,解码器将 z 转换为重构的输出。而在VAE中,编码器将 x 转换为潜在变量 p ( z ∣ x ) p (z∣x) p(zx)的概率分布,然后对潜在变量 z 随机采样,再由解码器解码成重构输出。

高斯混合模型(更新中)

在这里插入图片描述
在这里插入图片描述

参考文献和视频

根据论文内容进行的公式推导讲解:
  [论文简析]VAE: Auto-encoding Variational Bayes[1312.6114]
详细的VAE理论推导和实现细节:
  【干货】深入理解变分自编码器

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
深度学习生成模型VAE(Variational Autoencoder)是一种基于神经网络的生成模型VAE在产生新数据的时候是基于已有数据来做的,通过学习数据的潜在空间表示,然后从该空间中采样生成新的数据样本。VAE模型结合了自编码器和变分推断的思想,通过最大化样本的下界来优化模型参数,使得生成的样本能够更好地拟合原始数据分布。 与传统的自编码器相比,VAE在编码器部分引入了一个均值向量和方差向量,这样可以使得编码后的潜在表示服从一个高斯分布。这种设计使得VAE不仅能够学习到数据的低维表示,还能够通过在潜在空间中进行采样来生成新的样本。VAE模型的损失函数由重构误差项和正则化项组成,通过最小化该损失函数可以使得生成的样本能够尽可能地接近原始数据分布。 尽管VAE生成新数据方面的效果相对于其他模型可能有些模糊,但它在学习数据分布和生成新数据方面仍然具有一定的优势。通过使用变分推断和重参数化技巧,VAE能够生成具有多样性的样本,并且能够在潜在空间中进行插值和操作,从而得到更多样化的结果。 总结来说,VAE是一种深度学习生成模型,通过学习数据的潜在空间表示,可以生成新的样本。它结合了自编码器和变分推断的思想,并通过最大化样本的下界来优化模型参数。尽管生成的样本可能有些模糊,但VAE学习数据分布和生成多样化样本方面具有一定的优势。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值