信息熵

自信息量

  单符号离散信源的数学模型可用一维随机变量 X X X的概率空间分布来描述:

  如果信源发出的消息 x i x_i xi的概率为 p ( x i ) p(x_i) p(xi),则它所能提供的自信息量为:
I ( x i ) = − l o g 2   p ( x i ) I(x_i)=-log_2\ p(x_i) I(xi)=log2 p(xi)含义:

  • 信源发出信号前信宿对消息的不确定性;
  • 信源发出信号后提供给信宿的信息量,即消除不确定性所需的信息量。
    性质:
  • 值非负
  • 单调递减

联合自信息量

  自信息量的推广,涉及两个随机事件的离散信源的数学模型:

I ( x i y j ) = − l o g 2   p ( x i , y i ) I(x_iy_j)=-log_2\ p(x_i,y_i) I(xiyj)=log2 p(xi,yi) X 、 Y X、Y XY独立时:
I ( x i y j ) = − l o g 2   p ( x i , y i ) = − l o g 2   p ( x i ) − l o g 2   p ( y i ) = I ( x i ) + I ( y j ) I(x_iy_j)=-log_2\ p(x_i,y_i)=-log_2\ p(x_i)-log_2\ p(y_i)=I(x_i)+I(y_j) I(xiyj)=log2 p(xi,yi)=log2 p(xi)log2 p(yi)=I(xi)+I(yj)

条件自信息量

后验概率:
I ( y j ∣ x i ) = − l o g 2   p ( y j ∣ x i ) I(y_j|x_i)=-log_2\ p(y_j|x_i) I(yjxi)=log2 p(yjxi)信道转移概率:
I ( x i ∣ y j ) = − l o g 2   p ( x i ∣ y i ) I(x_i|y_j)=-log_2\ p(x_i|y_i) I(xiyj)=log2 p(xiyi)
自信息量、联合自信息量和条件信息量之间关系:
I ( x i y j ) = − l o g 2   p ( x i , y j ) = − l o g 2   p ( y j ∣ x i ) p ( x i ) = I ( y j ∣ x i ) + I ( x i ) = − l o g 2   p ( x i ∣ y j ) p ( y j ) = I ( x i ∣ y j ) + I ( y j ) \begin{aligned} I(x_iy_j)&=-log_2\ p(x_i,y_j)\\ &=-log_2\ p(y_j|x_i)p(x_i)=I(y_j|x_i)+I(x_i)\\ &=-log_2\ p(x_i|y_j)p(y_j)=I(x_i|y_j)+I(y_j) \end{aligned} I(xiyj)=log2 p(xi,yj)=log2 p(yjxi)p(xi)=I(yjxi)+I(xi)=log2 p(xiyj)p(yj)=I(xiyj)+I(yj)

互信息量

互信息量 = 先验不确定度 - 后验不确定度
I ( x i ; y j ) = I ( x i ) − I ( x i ∣ y j ) I(x_i;y_j)=I(x_i)-I(x_i|y_j) I(xi;yj)=I(xi)I(xiyj)性质:
I ( x i ; y j ) = I ( x i ) − I ( x i ∣ y j ) = l o g 2   p ( x i ∣ y j ) p ( x i ) = l o g 2   p ( x i , y j ) p ( y j ) p ( x i ) = l o g 2   p ( y j ∣ x i ) p ( y j ) = I ( y j ) − I ( y j ∣ x i ) = I ( y j ; x i ) \begin{aligned} I(x_i;y_j)&=I(x_i)-I(x_i|y_j)\\ &=log_2\ {\frac{p(x_i|y_j)}{p(x_i)}}\\ &=log_2\ {\frac{p(x_i,y_j)}{p(y_j)p(x_i)}}\\ &=log_2\ {\frac{p(y_j|x_i)}{p(y_j)}}\\ &=I(y_j)-I(y_j|x_i)\\ &=I(y_j;x_i) \end{aligned} I(xi;yj)=I(xi)I(xiyj)=log2 p(xi)p(xiyj)=log2 p(yj)p(xi)p(xi,yj)=log2 p(yj)p(yjxi)=I(yj)I(yjxi)=I(yj;xi)

  • 互信息量的值可正可负;
  • 统计独立的变量之间互信息量为0;
  • 两个消息之间的互信息量不大于其中任何一个消息的自信息量。

信息熵

  随机变量 X X X的信息熵为:自信息量 I ( x ) I(x) I(x)的数学期望,简称熵。
H ( x ) = E ( I ( x ) ) = − ∑ x ∈ X p ( x ) ( l o g 2   p ( x ) ) H(x)=E(I(x))=-\sum_{x\in X}{p(x)(log_2\ p(x))} H(x)=E(I(x))=xXp(x)(log2 p(x))性质:

  • 熵非负;
  • 信源发出前,表示信源的平均不确定度;
  • 信源发出后,表示信源提供的平均信息量;
  • 统计量,不具有个体性质。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

D-A-X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值