【概率论与数理统计】

概率论与数理统计


随机事件及其概率

随机试验

具备以下三个性质的事件可称为随机试验:

①试验可再相同条件下重复进行
②试验结果不止一个
③每次试验皆不确定结果,但明确其【可能出现的结果】

以上三种条件具备的实验称之为随机实验简称实验,记做E

例如:
E 1 : 掷骰子,观察点数 E_1:{\text{掷骰子,观察点数}} E1:掷骰子,观察点数

样本空间

研究实验E,其所有可能的结果为Ω,称之为样本空间,而其中单次试验的结果为ω,称为样本点,如此可知

ω ∈ Ω E 1 : Ω 1 = { 1 , 2 , 3 , 4 , 5 , 6 } ω∈Ω \\E_1:Ω_1=\{1,2,3,4,5,6\} ωΩE1:Ω1={1,2,3,4,5,6}

事件关系与运算

随机事件
在大量重复试验中具有某种规律的结果,简称【事件】
基本事件
由单个样本点对应的事件
复合事件
由部分样本点组成的集合
包含与相等
A⊇B,P(A|B)=1
A⊇B,B⊇A,A=B
事件之和
事件之积
事件之差
互不相容
对立事件
事件计算律
交换律
结合律
分配律
对偶律

频率与概率公理化定义

若有样本空间中Ω每个事件ωi发生的概率为P(ωi),i=1,2,3...其满足以下特性:

∑ i = 1 ∞ P ( ω i ) = 1 p ( ω i ) ≥ 0 ∑^∞_{i=1}P(ω_i)=1p(ωi)≥0 i=1P(ωi)=1p(ωi)0

通常,我们称事件A,B...涵盖了一部分样本空间ω,其概率为P(A),P(B)...

古典概型

定义

Ω为总样本空间,A为包含了Ω中一部分样本的事件,则

事件A发生概率= 事件A样本点 Ω 总样本点 {\text{事件A发生概率=}}\frac{{\text{事件A样本点}}}{Ω{\text{总样本点}}} 事件A发生概率=Ω总样本点事件A样本点
常见概率组合

N个元素中取K个的组合数 ( n k ) = C n k = n ! k ! ( n − k ) {\text{N个元素中取K个的组合数}}(_n^k)=C_n^k=\frac{n!}{k!(n-k)} N个元素中取K个的组合数(nk)=Cnk=k!(nk)n!

离散随机变量与分布函数

随机变量X定义

随机变量函数常写作大写X,为输入为样本空间Ω样本m(即事件结果),输出为输入事件对应的数学标号,此函数为在实数定义域上的一维函数(又称单值函数,即输入仅对应单个输出值)而小写x常代表X单个输出的取值

简称以事件为输入,数学标号为输出的单一关系对应函数

例 = { 离散型X: 掷骰子为n → X=n 抛硬币反正记0,1 → X = k ∈ { 0 , 1 } 某国家每月新生儿n → X = n 连续型X: 百米短跑记录s → X = s 某地区月度降雨量L → X = L 网络中每星期某种倾向的言论流量g → X = g {\text{例}} = \begin{cases} & {\text{离散型X:}}\\ & {\text{掷骰子为n}}→{\text{X=n}} \\ & {\text{抛硬币反正记0,1}}→ X=k∈\{0,1\} \\ & {\text{某国家每月新生儿n}}→X=n \\ & {\text{连续型X:}} \\ & {\text{百米短跑记录s}}→ X=s \\ & {\text{某地区月度降雨量L}}→ X=L \\ & {\text{网络中每星期某种倾向的言论流量g}}→ X=g \end{cases} = 离散型X:掷骰子为nX=n抛硬币反正记0,1X=k{0,1}某国家每月新生儿nX=n连续型X百米短跑记录sX=s某地区月度降雨量LX=L网络中每星期某种倾向的言论流量gX=g

随机变量X的分布函数F(x)取值是所有标号小于x的事件发生概率之和
性质

①P{X<a}的概率为F(a),故表示P{a<X<b}的发生概率为F(b)-F(a)

②F(x)之所以单调不减是因为F(x)根据定义表达的是所有标号小于x的事件发生概率之和,即F(x+0)=F(x),为右连续函数

③随机变量X,其不同的单次取值x对于分布函数F(x)具有F(+∞)=1,F(-∞)=0,即:

在所有可能的x中:  累积标号从 − ∞ 到 − ∞ 对应事件发生的概率为0,写作 F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 累积标号从 − ∞ 到 + ∞ 对应事件发生的概率为1,写作 F ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) = 1 {\text{在所有可能的x中: }} \\{\text{累积标号从}}-∞{\text{到}}-∞{\text{对应事件发生的概率为0,写作}}\\F(-∞)=\lim_{x→-∞}F(x)=0 \\{\text{累积标号从}}-∞{\text{到}}+∞{\text{对应事件发生的概率为1,写作}} \\F(+∞)=\lim_{x→+∞}F(x)=1 \\ 在所有可能的x中: 累积标号从对应事件发生的概率为0,写作F()=xlimF(x)=0累积标号从+对应事件发生的概率为1,写作F(+)=x+limF(x)=1
因此可知,F(x)∈[0,1]

常见离散分布函数

0-1分布 :
注释:
 01分布常用于表达事件的结果只有两种的情况,即0与1
分布律:

P { X = K } = p k ( 1 − p ) 1 − k , k = { 0 , 1 } , P ∈ ( 0 , 1 ) P\{X=K\}=p^k(1-p)^{1-k},k=\{0,1\},P∈(0,1) P{X=K}=pk(1p)1k,k={0,1},P(0,1)

称X服从参数为p的(0-1)分布,记做X~(0-1)

(0-1)分布律列表式:
X01
P1-pp
二项分布
注释:
二项分布常用于描述n次独立实验事件A发生次数的概率
分布律

p { X = k } = C n k p k q n − k , ( k = 1 … n ) 若 q = 1 − p , 0 < p < 1 , 则称X服从参数为n,p的二项分布,记为 X   B ( n , p ) . p\{X=k\}=C_n^kp^kq^{n-k},(k=1…n){\text{若}}q=1-p,0<p<1,{\text{则称X服从参数为n,p的二项分布,记为}}X~B(n,p). p{X=k}=Cnkpkqnk,(k=1n)q=1p,0<p<1,则称X服从参数为np的二项分布,记为X B(n,p).

泊松分布
注释:
作为研究大量实验中小概率事件发生次数概率的模型,也是二项分布的近似
分布律:

p X = k = λ k k ! e − λ , ( k = 1... n ) 其中 λ > 0 是常数,则称X服从参数为 λ 的泊松分布,记为 X   p ( λ ) p{X=k}=\frac{λ^k}{k!}e^{-λ},(k=1...n){\text{其中}}λ>0{\text{是常数,则称X服从参数为}}λ{\text{的泊松分布,记为}}X~p(λ) pX=k=k!λkeλ,(k=1...n)其中λ>0是常数,则称X服从参数为λ的泊松分布,记为X p(λ)

连续随机变量与概率密度

对于随机变量X,有分布函数F(x),若有非负函数f(x),对
$
x∈R
$

$
F(x)=∫^{x}_{-∞}f(t)dt
$
则称X为连续性随机变量,且f(x)为X的概率密度函数,简称概率密度

概率密度作为用于积分算出对应数字标示区间内的所有事件发生的概率的工具,单独就概率密度的取值没有意义

性质

f ( x ) ≥ 0 , ∫ − ∞ + ∞ f ( x ) d x = F ( = ∞ ) = 1 取任意区间(x1,x2)有 P { x 1 < X < x 2 } = ∫ x 2 x 1 f ( x ) d x 若F(x)在x处连续则有 F ′ ( x ) = f ( x ) P { x < X ≤ x + δ } = ∫ x x + δ f ( x ) = f ( x ) δ f(x)≥0, ∫^{+∞}_{-∞}f(x)dx=F(=∞)=1 \\{\text{取任意区间(x1,x2)有}}P\{x_1<X<x_2\}=∫^{x_1}_{x_2}f(x)dx \\{\text{若F(x)在x处连续则有}}F'(x)=f(x) \\P\{x<X≤x+δ\}=∫_x^{x+δ}f(x)=f(x)δ f(x)0,+f(x)dx=F(=)=1取任意区间(x1,x2)P{x1<X<x2}=x2x1f(x)dxF(x)x处连续则有F(x)=f(x)P{x<Xx+δ}=xx+δf(x)=f(x)δ

常用连续分布函数

均匀分布
注释
又称等可能分布,此概型的每一个对应标号的事件发生的概率都是相等的,故对于概率密度函数来说,此概型在定义区间ab中的区间cd发生的概率仅与cd长度有关与cd在ab中的位置无关

即:
P c < x < d = ∫ c d f ( x ) d x = ∫ c d 1 b − a d x = d − c b − a P{c<x<d}=∫^d_cf(x)dx=∫^d_c\frac{1}{b-a}dx=\frac{d-c}{b-a} Pc<x<d=cdf(x)dx=cdba1dx=badc
则有若有随机变量X概率密度为

f ( x ) = { 1 b − a , a < x < b 0 , 其他 f(x) = \begin{cases} & \frac{1}{b-a}& ,a<x<b \\ & 0& ,{\text{其他}} \\ \end{cases} f(x)={ba10,a<x<b,其他
则称该概率模型满足均匀分布记做X~U(a,b)

且其分布函数为
F ( x ) = { 0 , x < a ∫ c x 1 b − a d t = d − c b − a a ≤ x < b , 1 x ≥ b F(x) = \begin{cases} & 0,& & x<a \\ & ∫^x_c\frac{1}{b-a}dt= \frac{d-c}{b-a}& & a≤x<b, \\ & 1 & & x≥b \\ \end{cases} F(x)= 0,cxba1dt=badc1x<aax<b,xb

指数分布
注释
指数分布具有无记忆性,常用于灯泡寿命,排队等待时间,通话时间等都服从指数分布

若有连续型随机变量X的概率密度为

f ( x ) = { e − λ x , x > 0 0 , 其他 f(x) = \begin{cases} e^{-λx},& x>0 \\ 0,& {\text{其他}} \end{cases} f(x)={eλx,0,x>0其他
则称此随机变量X服从指数分布,记做X~E(λ)

且X的分布函数
F ( x ) = { 1 − e − λ x , x > 0 , 0 , 其他 F(x) = \begin{cases} & 1-e^{-λx} & ,x>0, \\ & 0 & ,{\text{其他}} \\ \end{cases} F(x)={1eλx0,x>0,,其他

正态分布
注释
此概型为概论常用分布,在自然界中相当常见,如零件尺寸误差测量,日平均气温,雨量,都服从或者近似服从正太分布

若连续型随机变量X的概率密度为

f ( x ) = 1 2 π σ e ( x − μ ) 2 σ 2 f(x)=\frac{1}{\sqrt{2πσ}}e^{\frac{(x-μ)}{2σ^2}} f(x)=2πσ 1e2σ2(xμ)
则称X服从正太分布,记做X~N(μ,σ^2)

其中,若
μ = 0 , σ 2 = 1 , μ=0,σ^2=1, μ=0,σ2=1,
则称该随机变量服从标准正太分布,记为X~N(0,1)

性质

当x趋近于 ± ∞ 时,y趋近于0 f(x)图形在 x = μ 为中心对称 f(x)在 x = μ 处得到最大值 f ( u ) = 1 2 π σ f ( x ) 于 ( − ∞ , μ ) ↑ , ( μ , + ∞ ) ↓ 由分布函数定义可推: F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t 若X服从标准正态分布,则有分布函数 φ ( x ) = = 1 2 π ∫ − ∞ x e − t 2 2 d t 且有 φ ( 0 ) = 1 2 , φ ( − x ) = 1 − φ ( x ) 一般正太分布的标准化可通过: F ( x ) = φ ( x − μ σ ) , x ∈ R 来完成,且有 P { x 1 < X ≤ x 2 } = φ ( x 2 − μ σ ) − φ ( x 1 − μ σ ) {\text{当x趋近于}}±∞{\text{时,y趋近于0}} \\{\text{f(x)图形在}}x=μ{\text{为中心对称}} \\{\text{f(x)在}}x=μ{\text{处得到最大值}}f(u)=\frac{1}{\sqrt{2π}σ} \\f(x){\text{于}}(-∞,μ)↑,(μ,+∞)↓{\text{由分布函数定义可推:}}F(x)=\frac{1}{\sqrt{2π}σ}∫^x_{-∞}e^{-\frac{(t-μ)^2}{2σ^2}}dt \\{\text{若X服从标准正态分布,则有分布函数}}φ(x)==\frac{1}{\sqrt{2π}}∫^x_{-∞}e^{-\frac{t^2}{2}}dt \\{\text{且有}}φ(0)=\frac{1}{2},φ(-x)=1-φ(x) {\text{一般正太分布的标准化可通过:}} \\F(x)=φ(\frac{x-μ}{σ}),x∈R{\text{来完成,且有}}P\{x_1<X≤x_2\}=φ(\frac{x_2-μ}{σ})-φ(\frac{x_1-μ}{σ}) x趋近于±时,y趋近于0f(x)图形在x=μ为中心对称f(x)x=μ处得到最大值f(u)=2π σ1f(x)(,μ),(μ,+)由分布函数定义可推:F(x)=2π σ1xe2σ2(tμ)2dtX服从标准正态分布,则有分布函数φ(x)==2π 1xe2t2dt且有φ(0)=21,φ(x)=1φ(x)一般正太分布的标准化可通过:F(x)=φ(σxμ),xR来完成,且有P{x1<Xx2}=φ(σx2μ)φ(σx1μ)

随机变量的函数分布

离散型随机变量函数

若有随机变量X其分布律
F X ( x i ) = P i y i = g ( x i ) , g − 1 ( y i ) = x i 则 Y = g ( X ) 的分布律则为 F Y ( y i ) = F X ( g − 1 ( y i ) ) 若有 , g ( x 1 ) = g ( x 2 ) = . . . g ( x n ) = y i 则 F y ( y i ) = ∑ i = 1 n F x ( x i ) F_X(x_i)=P_i \\y_i=g(x_i),g^{-1}(y_i)=x_i \\{\text{则}}Y=g(X){\text{的分布律则为}} \\F_Y(y_i)=F_X(g^{-1}(y_i)) \\{\text{若有}}, g(x_1)=g(x_2)=...g(x_n)=y_i{\text{则}}F_y(yi)=∑_{i=1}^{n}F_x(x_i) FX(xi)=Piyi=g(xi),g1(yi)=xiY=g(X)的分布律则为FY(yi)=FX(g1(yi))若有,g(x1)=g(x2)=...g(xn)=yiFy(yi)=i=1nFx(xi)

连续型随机变量函数

若有随机变量X有概率密度为 f x ( x ) , 又有连续型随机变量Y = g ( X ) 则称此Y为X的连续型随机变量函数,并满足以下性质: F Y ( y ) = P { Y ≤ y } = P { g − 1 ( Y ) ≤ y } = P { g ( X ) ≤ y } = P { X ≤ g − 1 ( y ) } f Y ( y ) = F Y ′ ( y ) 当所输入的y可令 f Y ( y ) > 0 时,我们称之为y在g(x)的值域中的有效范围 无论在分布函数还是概率密度中,无效值域的概率皆视为0 {\text{若有随机变量X有概率密度为}}f_x(x),{\text{又有连续型随机变量Y}}=g(X) \\{\text{则称此Y为X的连续型随机变量函数,并满足以下性质:}} \\F_Y(y)=P\{Y≤y\}=P\{g^{-1}(Y)≤y\}=P\{g(X)≤y\}=P\{X≤g^{-1}(y)\} \\f_Y(y)=F'_Y(y) \\{\text{当所输入的y可令}}f_Y(y)>0{\text{时,我们称之为y在g(x)的值域中的有效范围}} \\{\text{无论在分布函数还是概率密度中,无效值域的概率皆视为0}} 若有随机变量X有概率密度为fx(x),又有连续型随机变量Y=g(X)则称此YX的连续型随机变量函数,并满足以下性质:FY(y)=P{Yy}=P{g1(Y)y}=P{g(X)y}=P{Xg1(y)}fY(y)=FY(y)当所输入的y可令fY(y)>0时,我们称之为yg(x)的值域中的有效范围无论在分布函数还是概率密度中,无效值域的概率皆视为0

二维随机变量及其函数分布

定义:

若有Ω为E的样本空间,其中,X,Y都是Ω的一位随机变量,则由X,Y构成的向量(X,Y)称为二维随机变量。

性质:

若有 F ( x , y ) = P { X ≤ x , Y ≤ y } 则称F(x,y)为随机变量 ( X , Y ) 的分布函数或联合分布函数, F ( X , Y ) 取值可想象为落在由变量X,Y框定的区域的面积内的概率,其分布函数的性质有: ( 1 ) F ( X , Y ) ∈ ( 0 , 1 ) F ( − ∞ , y ) = F ( x , − ∞ ) = F ( + ∞ , − ∞ ) = F ( − ∞ , − ∞ ) = 0 F ( + ∞ , + ∞ ) = 1 F ( X , Y ) 为各变量单调不减的函数,即:若有 x 2 > x 1 , y 2 > y 1 则 ( 2 ) F ( a , x 2 ) > F ( a , x 1 ) , F ( a , y 2 ) > F ( a , y 1 ) ( 3 ) F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) ≥ 0 二维函数F(X,Y)若满足上三条性质必未某一随机变量(X,Y)的分布函数 反之,随机变量(X,Y)的分布函数必满足以上三条性质 {\text{若有}}F(x,y)=P\{X≤x,Y≤y\}{\text{则称F(x,y)为随机变量}}(X,Y) \\{\text{的分布函数或联合分布函数,}}F(X,Y) \\{\text{取值可想象为落在由变量X,Y框定的区域的面积内的概率,其分布函数的性质有:}} \\(1) F(X,Y)∈(0,1) \\F(-∞,y)=F(x,-∞)=F(+∞,-∞)=F(-∞,-∞)=0F(+∞,+∞)=1 \\F(X,Y){\text{为各变量单调不减的函数,即:若有}}x_2>x_1,y_2>y_1{\text{则}} \\(2)F(a,x_2)>F(a,x_1),F(a,y_2)>F(a,y_1) \\(3) F(x_2,y_2)-F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1)≥0 \\{\text{二维函数F(X,Y)若满足上三条性质必未某一随机变量(X,Y)的分布函数}} \\{\text{反之,随机变量(X,Y)的分布函数必满足以上三条性质}} 若有F(x,y)=P{Xx,Yy}则称F(x,y)为随机变量(X,Y)的分布函数或联合分布函数,F(X,Y)取值可想象为落在由变量XY框定的区域的面积内的概率,其分布函数的性质有:(1)F(X,Y)(0,1)F(,y)=F(x,)=F(+,)=F(,)=0F(+,+)=1F(X,Y)为各变量单调不减的函数,即:若有x2>x1,y2>y1(2)F(a,x2)>F(a,x1),F(a,y2)>F(a,y1)(3)F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)0二维函数F(X,Y)若满足上三条性质必未某一随机变量(X,Y)的分布函数反之,随机变量(X,Y)的分布函数必满足以上三条性质

二维离散随机变量及其分布

定义:

若有随机变量 ( X , Y ) , 其取值分别为 ( X i , Y j ) , ( i , j ) ∈ N ∗ ( 1 , 2 , 3 , . . ) 则称 ( X , Y ) 为二维离散型随机变量,记做 P { X = x i , Y = y j } = p i j , i , j = 1 , 2... , n 或 1 , 2 , . . . {\text{若有随机变量}}(X,Y),{\text{其取值分别为}}(X_i,Y_j),(i,j)∈N^*(1,2,3,..){\text{则称}} \\(X,Y){\text{为二维离散型随机变量,记做}} \\P\{X=x_i,Y=y_j\}=p_{ij},i,j=1,2...,n{\text{或}}1,2,... 若有随机变量(X,Y),其取值分别为(Xi,Yj),(i,j)N(1,2,3,..)则称(X,Y)为二维离散型随机变量,记做P{X=xi,Y=yj}=pij,i,j=1,2...,n1,2,...

性质:

若 ( 1 ) : P i j ≥ 0 ( 2 ) : ∑ i = 1 ∞ ∑ j = 1 ∞ P i j = 1 则称 P { X = x i , Y = y j } = p i j , i , j = 1 , 2... , n 或 1 , 2 , . . . 离散型随机变量(X,Y)的概率分布,简称分布律,或称联合分布律 分布律常用表来表示,如下: {\text{若}} \\(1):P_{ij}≥0 \\(2):∑^∞_{i=1}∑_{j=1}^∞P_{ij}=1 \\{\text{则称}}P\{X=x_i,Y=y_j\}=p_{ij},i,j=1,2...,n{\text{或}}1,2,... \\{\text{离散型随机变量(X,Y)的概率分布,简称分布律,或称联合分布律}} \\{\text{分布律常用表来表示,如下:}} (1):Pij0(2):i=1j=1Pij=1则称P{X=xi,Y=yj}=pij,i,j=1,2...,n1,2,...离散型随机变量(X,Y)的概率分布,简称分布律,或称联合分布律分布律常用表来表示,如下:

x\yy1y2yj
x1P11p12p1j
x2p21p22p2j
xipi1pi2pij

二维连续型随机变量及其概率密度

定义

设有(X,Y)为二维随机变量,分布函数为F(x,y),若存在非负函数f(x,y), 使任意实数输入x,y都有: F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v 则称(X,Y)为二维连续型随机变量,f(x,y)为随机变量(X,Y)的概率密度函数 简称【概率密度】或【联合密度】 {\text{设有(X,Y)为二维随机变量,分布函数为F(x,y),若存在非负函数f(x,y),}} \\{\text{使任意实数输入x,y都有:}} \\F(x,y)=∫_{-∞}^{x}∫_{-∞}^{y}f(u,v)dudv \\{\text{则称(X,Y)为二维连续型随机变量,f(x,y)为随机变量(X,Y)的概率密度函数}} \\{\text{简称【概率密度】或【联合密度】}} \\ 设有(X,Y)为二维随机变量,分布函数为F(x,y),若存在非负函数f(x,y),使任意实数输入x,y都有:F(x,y)=xyf(u,v)dudv则称(X,Y)为二维连续型随机变量,f(x,y)为随机变量(X,Y)的概率密度函数简称【概率密度】或【联合密度】

性质

由定义可知以下性质: ( 1 ) f ( x , y ) ≥ 0 ( 2 ) ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = F ( + ∞ , − ∞ ) = 1 ( 3 ) ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) ( 4 ) 设G是平面xOy上的一个区域,则: P { ( X , Y ) ∈ G } = ∫ ∫ ( x , y ) ∈ G f ( x , y ) d x d y 注释:z=f(x,y)在空间中表示一段曲面,则由性质2可知若当x,y皆为无穷大时, 以此曲面的底 ( x , y ) ∈ G 基准线为G的边,母线平行于Z轴所构成的曲顶柱体积必然为1 即,其体积 = P { ( x , y ) ∈ G } {\text{由定义可知以下性质:}} \\(1)f(x,y)≥0 \\(2)∫_{-∞}^{+∞}∫_{-∞}^{+∞}f(x,y)dxdy=F(+∞,-∞)=1 \\(3)\frac{∂^2F(x,y)}{∂x∂y}=f(x,y) \\(4){\text{设G是平面xOy上的一个区域,则:}} \\P\{(X,Y)∈G\}=∫∫_{(x,y)∈G}f(x,y)dxdy{\text{注释:z=f(x,y)在空间中表示一段曲面,则由性质2可知若当x,y皆为无穷大时,}} \\{\text{以此曲面的底}}(x,y)∈G{\text{基准线为G的边,母线平行于Z轴所构成的曲顶柱体积必然为1}} \\{\text{即,其体积}}=P\{(x,y)∈G\} 由定义可知以下性质:(1)f(x,y)0(2)++f(x,y)dxdy=F(+,)=1(3)xy2F(x,y)=f(x,y)(4)G是平面xOy上的一个区域,则:P{(X,Y)G}=(x,y)Gf(x,y)dxdy注释:z=f(x,y)在空间中表示一段曲面,则由性质2可知若当xy皆为无穷大时,以此曲面的底(x,y)G基准线为G的边,母线平行于Z轴所构成的曲顶柱体积必然为1即,其体积=P{(x,y)G}

常见二维随机变量分布

均匀分布

G为平面有界区域,面积为A,若随机变量(X,Y)为 f ( x , y ) = f ( x ) = { 1 A , ( x , y ) ∈ G 0 , 其他 则称二维随机变量(X,Y)在G上服从均匀分布且若有D是在G内面积为 S d 的子区域,则有: P { ( X , Y ) ∈ D } = ∫ ∫ ( x , y ) ∈ D 1 A d x d y = S D A 此概率仅与D的面积有关,与其在G中的位置无关 {\text{G为平面有界区域,面积为A,若随机变量(X,Y)为}}f(x,y)=f(x) = \begin{cases} & \frac{1}{A},(x,y)∈G \\ & 0,{\text{其他}} \\\end{cases} \\{\text{则称二维随机变量(X,Y)在G上服从均匀分布}}{\text{且若有D是在G内面积为}}S_d{\text{的子区域,则有:}} \\P\{(X,Y)∈D\}=∫∫_{(x,y)∈D}\frac{1}{A}dxdy=\frac{S_D}{A} \\{\text{此概率仅与D的面积有关,与其在G中的位置无关}} G为平面有界区域,面积为A,若随机变量(X,Y)f(x,y)=f(x)={A1,(x,y)G0,其他则称二维随机变量(X,Y)G上服从均匀分布且若有D是在G内面积为Sd的子区域,则有:P{(X,Y)D}=(x,y)DA1dxdy=ASD此概率仅与D的面积有关,与其在G中的位置无关

正太分布

若有随机变量(X,Y)的概率密度为 f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − x − μ 1 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + y − μ 2 σ 2 2 , x , y ∈ R 此中 σ , μ , ρ 皆为常数,且 σ > 0 , ∣ ρ ∣ < 1 则称随机变量(X,Y)服从二维正太分布,记做 ( X , Y ) ~ N ( μ 1 , μ 2 , σ 1 , σ 2 , ρ ) {\text{若有随机变量(X,Y)的概率密度为}} \\f(x,y)=\frac{1}{2πσ_1σ_2\sqrt{1-ρ^2}}e^{-\frac{x-μ_1}{σ_1^2}-\frac{2ρ(x-μ_1)(y-μ_2)}{σ_1σ_2}+\frac{y-μ_2} \\{σ_2^2}},x,y∈R \\{\text{此中}}σ,μ,ρ{\text{皆为常数,且}}σ>0,|ρ|<1 \\{\text{则称随机变量(X,Y)服从二维正太分布,记做}}(X,Y) \tilde{}N(μ_1,μ_2,σ_1,σ_2,ρ) 若有随机变量(X,Y)的概率密度为f(x,y)=2πσ1σ21ρ2 1eσ12xμ1σ1σ22ρ(xμ1)(yμ2)+yμ2σ22,x,yR此中σ,μ,ρ皆为常数,且σ>0,ρ<1则称随机变量(X,Y)服从二维正太分布,记做(X,Y)~N(μ1,μ2,σ1,σ2,ρ)

边缘分布

边缘分布函数
定义

设(X,Y)为二维随机变量,其分布函数为F(x,y)则有: F x ( x ) = lim ⁡ y → + ∞ F ( x , y ) F y ( y ) = lim ⁡ x → + ∞ F ( x , y ) 由此可知 F x ( x ) , F y ( y ) 由F(x,y)唯一确定,证明如下: F x ( x ) = P { X < x } = P { X < x , Y < + ∞ } = F ( x , + ∞ ) F y ( y ) = F { Y < y } = P { X < + ∞ , Y < y } = F ( + ∞ , y ) {\text{设(X,Y)为二维随机变量,其分布函数为F(x,y)则有:}} \\F_x(x)=\lim_{y→+∞}F(x,y) F_y(y)=\lim_{x→+∞}F(x,y) \\ {\text{由此可知}}F_x(x),F_y(y){\text{由F(x,y)唯一确定,证明如下:}} \\F_x(x)=P\{X<x\}=P\{X<x,Y<+∞\}=F(x,+∞)F_y(y)=F\{Y<y\}=P\{X<+∞,Y<y\}=F(+∞,y) (X,Y)为二维随机变量,其分布函数为F(x,y)则有:Fx(x)=y+limF(x,y)Fy(y)=x+limF(x,y)由此可知Fx(x),Fy(y)F(x,y)唯一确定,证明如下:Fx(x)=P{X<x}=P{X<x,Y<+}=F(x,+)Fy(y)=F{Y<y}=P{X<+,Y<y}=F(+,y)

边缘分布律(离散)
定义

若有离散型随机变量(X,Y),其分布律为: P { X = x i , Y = y j } = p i j , i , j = N ∗ ∈ ( 1 , 2 , . . . ) P i ⋅ = ∑ j = 1 + ∞ P i j , i = 1 , 2 , 3... P ⋅ j = ∑ i = 1 + ∞ P i j , j = 1 , 2 , 3... {\text{若有离散型随机变量(X,Y),其分布律为:}} \\P\{X=x_i,Y=y_j\}=p_{ij},i,j=N^*∈(1,2,...) \\P_{i·}=∑^{+∞}_{j=1}P_{ij},i=1,2,3...P_{·j}=∑^{+∞}_{i=1}P_{ij},j=1,2,3... 若有离散型随机变量(X,Y),其分布律为:P{X=xi,Y=yj}=pij,i,j=N(1,2,...)Pi=j=1+Pij,i=1,2,3...Pj=i=1+Pij,j=1,2,3...

以上分别称为随机变量(X,Y)关于X或Y的边缘分布律

一般常用列表进行表示分布律与边缘分布律:

x\yy1y2yjPj·
x1P11p12p1j ∑ j = 1 + ∞ P 1 j ∑_{j=1}^{+∞}P_{1j} j=1+P1j
x2p21p22p2j ∑ j = 1 + ∞ P 2 j ∑_{j=1}^{+∞}P_{2j} j=1+P2j
xipi1pi2pij ∑ j = 1 + ∞ P i j ∑_{j=1}^{+∞}P_{ij} j=1+Pij
p·i ∑ i = 1 + ∞ P i 1 ∑_{i=1}^{+∞}P_{i1} i=1+Pi1$ ∑_{i=1}^{+∞}P_{i2}$$ ∑_{i=1}^{+∞}P_{ij}$1
边缘概率密度(连续)
定义

设(X<Y)为二维连续型随机变量,则其概率密度为: f ( x , y ) 则 f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x 称之为随机变量(X,Y),关于X,关于Y的边缘概率密度函数,简称【边缘密度】 {\text{设(X<Y)为二维连续型随机变量,则其概率密度为:}}f(x,y){\text{则}} \\f_X(x)=∫^{+∞}_{-∞}f(x,y)dyf_Y(y)=∫^{+∞}_{-∞}f(x,y)dx \\{\text{称之为随机变量(X,Y),关于X,关于Y的边缘概率密度函数,简称【边缘密度】}} (X<Y)为二维连续型随机变量,则其概率密度为:f(x,y)fX(x)=+f(x,y)dyfY(y)=+f(x,y)dx称之为随机变量(X,Y),关于X,关于Y的边缘概率密度函数,简称【边缘密度】

示例

例如:随机变量(X,Y)的概率密度为: f ( x , y ) = { g ( x , y ) a < x < b , c < y < d 其他 , 0 则其边缘密度则为 f X ( x ) = ∫ c d g ( x , y ) d y = { ∫ c d g ( x , y ) d y a < x < b 其他 , 0 f Y ( y ) = ∫ a b g ( x , y ) d x = { ∫ a b g ( x , y ) d x c < y < d 其他 , 0 {\text{例如:随机变量(X,Y)的概率密度为:}} \\f(x,y)= \begin{cases} & g(x,y) & a<x<b,c<y<d \\ & {\text{其他}} & ,0\\\end{cases}{\text{则其边缘密度则为}} \\f_X(x)=∫_c^dg(x,y)dy= \begin{cases} & ∫_c^dg(x,y)dy & a<x<b \\ & {\text{其他}} & ,0\\\end{cases}f_Y(y)=∫_a^bg(x,y)dx= \begin{cases} & ∫_a^bg(x,y)dx & c<y<d \\ & {\text{其他}} & ,0\\\end{cases} 例如:随机变量(X,Y)的概率密度为:f(x,y)={g(x,y)其他a<x<b,c<y<d,0则其边缘密度则为fX(x)=cdg(x,y)dy={cdg(x,y)dy其他a<x<b,0fY(y)=abg(x,y)dx={abg(x,y)dx其他c<y<d,0

条件分布

条件分布律(离散)
定义

若有二维随机变量(X,y),使 P { X = x i , Y = y j } = P i j , i , j ∈ N ∗ 设n为常数,则其条件概率 P { X = x i ∣ Y = y n } = P n j P ⋅ j 称为随机变量(X,Y)以{Y=yn}为条件的概率 P { Y = y j ∣ X = x n } = P i n P i ⋅ 称为随机变量(X,Y)以{X=xn}为条件的概率 {\text{若有二维随机变量(X,y),使}}P\{X=x_i,Y=y_j\}=P_{ij},i,j∈N^* \\{\text{设n为常数,则其条件概率}} \\P\{X=x_i|Y=y_n\}=\frac{P_{nj}}{P·j}{\text{称为随机变量(X,Y)以\{Y=yn\}为条件的概率}} \\P\{Y=y_j|X=x_n\}=\frac{P_{in}}{Pi·}{\text{称为随机变量(X,Y)以\{X=xn\}为条件的概率}} 若有二维随机变量(X,y),使P{X=xi,Y=yj}=Pij,i,jNn为常数,则其条件概率P{X=xiY=yn}=PjPnj称为随机变量(X,Y){Y=yn}为条件的概率P{Y=yjX=xn}=PiPin称为随机变量(X,Y){X=xn}为条件的概率

性质

设n为常量, i , j = 1 , 2 , 3... ∈ N ∗ ( 1 ) ( P { X = x i ∣ Y = y n } 或 P { Y = y j ∣ X = X n } ) ≥ 0 ( 2 ) ∑ i = 1 ∞ P { X = x i ∣ Y = y n } = ∑ i = 1 ∞ P i j P ⋅ j = P ⋅ j P ⋅ j = 1 = P i ⋅ P i ⋅ = ∑ j = 1 ∞ P i j P i ⋅ = ∑ j = 1 ∞ P { Y = y j ∣ X = x n } {\text{设n为常量,}}i,j=1,2,3...∈N^* \\(1)(P\{X=x_i|Y=y_n\}{\text{或}}P\{Y=y_j|X=X_n\})≥0 \\(2)∑^∞_{i=1}P\{X=x_i|Y=y_n\}=∑^∞_{i=1}\frac{P_{ij}}{P·j}=\frac{P·j}{P·j}=1=\frac{Pi·} \\{Pi·}=∑^∞_{j=1}\frac{P_{ij}}{Pi·}=∑^∞_{j=1}P\{Y=y_j|X=x_n\} n为常量,i,j=1,2,3...N(1)(P{X=xiY=yn}P{Y=yjX=Xn})0(2)i=1P{X=xiY=yn}=i=1PjPij=PjPj=1=PiPi=j=1PiPij=j=1P{Y=yjX=xn}

条件概率密度(连续)
定义

连续型条件分布函数(X,Y)由于对于确定值的概率取0,故用极限方法导出条件分布函数 设 ( X , Y ) 为二维连续型随机变量,其概率密度为 f ( x , y ) 对于给定的 ε > 0 ∃ P { y < Y ≤ y + ε } > 0 , 且任意 x ∈ R , 则有: F X ∣ Y ( x ∣ y ) = P { X ≤ x ∣ y < Y ≤ y + ε } = P { X ≤ x , y < Y ≤ y + ε } P { y < Y ≤ y + ε } = lim ⁡ ε → 0 + ∫ − ∞ x [ ∫ y y + ε f ( x , y ) d y ] d x ∫ y y + ε f Y ( y ) d y = ∫ − ∞ x ε f ( x , y ) d x ε f Y ( y ) = ∫ − ∞ x f ( x , y ) f Y ( y ) d x 设(X,Y)为二维连续型随机变量,概率密度为 f ( x , y ) 若对于确定的 y = y n , ∃ f Y ( y n ) > 0 , 则称 f ( x , y n ) f Y ( y n ) 为 P { Y = y } 条件下,X的条件概率密度 记为 f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( x , y ) 称 ∫ − ∞ x f X ∣ Y ( u ∣ y ) d u 为 { Y = y n } 的条件下,X的条件分布函数记为: F X ∣ Y ( X ∣ Y ) = ∫ − ∞ x f X ∣ Y ( u ∣ y ) d u 同理可知xy互换等式仍然成立 且有: f ( x , y ) = f Y ( y ) f x ∣ y ( x ∣ y ) = f X ( x ) f y ∣ x ( y ∣ x ) {\text{连续型条件分布函数(X,Y)由于对于确定值的概率取0,故用极限方法导出条件分布函数}} \\{\text{设}}(X,Y){\text{为二维连续型随机变量,其概率密度为}}f(x,y){\text{对于给定的}}ε>0 \\∃P\{y<Y≤y+ε\}>0,{\text{且任意}}x∈R,{\text{则有:}} \\F_{X|Y}(x|y)=P\{X≤x|y<Y≤y+ε\} \\=\frac{P\{X≤x,y<Y≤y+ε\}}{P\{y<Y≤y+ε\}} \\=\lim_{ε→0^+}\frac{∫^x_{-∞}[∫^{y+ε}_yf(x,y)dy]dx}{∫^{y+ε}_yf_Y(y)dy} \\=\frac{∫_{-∞}^xεf(x,y)dx}{εf_Y(y)} \\=∫^x_{-∞}\frac{f(x,y)}{f_Y(y)}dx \\{\text{设(X,Y)为二维连续型随机变量,概率密度为}}f(x,y){\text{若对于确定的}}y=y_n, ∃f_Y(y_n)>0,{\text{则称}}\frac{f(x,y_n)}{f_Y(y_n)}{\text{为}}P\{Y=y\}{\text{条件下,X的条件概率密度}} \\{\text{记为}}f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(x,y)} \\{\text{称}}∫^x_{-∞}f_{X|Y}(u|y)du{\text{为}}\{Y=y_n\}{\text{的条件下,X的条件分布函数记为:}} \\F_{X|Y}(X|Y)=∫^x_{-∞}f_{X|Y}(u|y)du \\{\text{同理可知xy互换等式仍然成立}} \\{\text{且有:}}f(x,y)=f_Y(y)f_{x|y}(x|y)=f_X(x)f_{y|x}(y|x) 连续型条件分布函数(XY)由于对于确定值的概率取0,故用极限方法导出条件分布函数(X,Y)为二维连续型随机变量,其概率密度为f(x,y)对于给定的ε>0P{y<Yy+ε}>0,且任意xR,则有:FXY(xy)=P{Xxy<Yy+ε}=P{y<Yy+ε}P{Xx,y<Yy+ε}=ε0+limyy+εfY(y)dyx[yy+εf(x,y)dy]dx=εfY(y)xεf(x,y)dx=xfY(y)f(x,y)dx(X,Y)为二维连续型随机变量,概率密度为f(x,y)若对于确定的y=yn,fY(yn)>0,则称fY(yn)f(x,yn)P{Y=y}条件下,X的条件概率密度记为fXY(xy)=fY(x,y)f(x,y)xfXY(uy)du{Y=yn}的条件下,X的条件分布函数记为:FXY(XY)=xfXY(uy)du同理可知xy互换等式仍然成立且有:f(x,y)=fY(y)fxy(xy)=fX(x)fyx(yx)

随机变量的独立性

定义

设二维随机变量 ( X , Y ) 对任意 { x , y } ∈ R ∃ : P { X ≤ x , Y ≤ y } = P { Y ≤ y } P { X ≤ x } 即 F ( x , y ) = F X ( x ) F Y ( y ) 联合分布等于边缘分布之积,则称随机变量X与Y相互独立 则在X,Y彼此独立的前提下 F X ( x ) , F Y ( y ) 可唯一确定F(x,y) {\text{设二维随机变量}}(X,Y){\text{对任意}}\{x,y\}∈R \\∃:P\{X≤x,Y≤y\}=P\{Y≤y\}P\{X≤x\} \\{\text{即}}F(x,y)=F_X(x)F_Y(y) \\{\text{联合分布等于边缘分布之积,则称随机变量X与Y相互独立}} \\{\text{则在X,Y彼此独立的前提下}}F_X(x),F_Y(y){\text{可唯一确定F(x,y)}} 设二维随机变量(X,Y)对任意{x,y}R:P{Xx,Yy}=P{Yy}P{Xx}F(x,y)=FX(x)FY(y)联合分布等于边缘分布之积,则称随机变量XY相互独立则在XY彼此独立的前提下FX(x),FY(y)可唯一确定F(x,y)

性质1

设随机变量 ( X , Y ) 为二维离散型随机变量,分布律为: P { X = x i , Y = y j } = P i j , i , j = 1 , 2 , . . . , 则X,Y彼此独立的充分必要条件是对于 ( x , y ) 的所有可能取值 ( x i , y i ) , i , j = 1 , 2 , . . . ∃ P { X = x i , Y = y j } = P X = x i P Y = y j 即 P i j = P i ⋅ P ⋅ j {\text{设随机变量}}(X,Y){\text{为二维离散型随机变量,分布律为:}} \\P\{X=x_i,Y=y_j\}=P_{ij},i,j=1,2,..., \\{\text{则X,Y彼此独立的充分必要条件是对于}}(x,y){\text{的所有可能取值}}(x_i,y_i),i,j=1,2,... \\∃P\{X=x_i,Y=y_j\}=P{X=x_i}P{Y=y_j} \\{\text{即}}P_ij=P_{i·}P_{·j} 设随机变量(X,Y)为二维离散型随机变量,分布律为:P{X=xi,Y=yj}=Pij,i,j=1,2,...,XY彼此独立的充分必要条件是对于(x,y)的所有可能取值(xi,yi),i,j=1,2,...P{X=xi,Y=yj}=PX=xiPY=yjPij=PiPj

性质2

设二维连续型随机变量 ( X , Y ) 其概率密度为 f ( x , y ) 则X与Y相互独立的充分必要条件是 f ( x , y ) = f X ( x ) f Y ( y ) 此等式在平面上除了面积为零的集合外,处处成立 {\text{设二维连续型随机变量}}(X,Y){\text{其概率密度为}}f(x,y){\text{则X与Y相互独立的充分必要条件是}} \\f(x,y)=f_X(x)f_Y(y) \\{\text{此等式在平面上除了面积为零的集合外,处处成立}} \\ 设二维连续型随机变量(X,Y)其概率密度为f(x,y)XY相互独立的充分必要条件是f(x,y)=fX(x)fY(y)此等式在平面上除了面积为零的集合外,处处成立

两个离散型随机变量的分布

定义

设随机变量 ( X , Y ) 为二维离散型随机变量,分布律为: P { X = x i , Y = y j } = P i j , i , j = 1 , 2 , . . . , ∃ z = φ ( x , y ) 为二元函数, Z = φ ( X , Y ) 为一维离散型随机变量,则随机变量 Z = φ ( X , Y ) 的分布律为: P { Z = z k } = P φ ( X , Y ) = Z k = ∑ φ ( x i , y j ) = z k P { X = x i , Y = y j } , k = 1 , 2... ∈ N ∗ 若有同一 φ ( x i , y j ) 输出对应不同的 x i y j 输入,则必须将不同的输入所属的 P { X = x i , Y = y j } 合并即 ∑ P { X = x i , Y = y j } {\text{设随机变量}}(X,Y){\text{为二维离散型随机变量,分布律为:}} \\P\{X=x_i,Y=y_j\}=P_{ij},i,j=1,2,..., \\∃z=φ(x,y){\text{为二元函数,}}Z=φ(X,Y){\text{为一维离散型随机变量,则随机变量}} \\Z=φ(X,Y){\text{的分布律为:}} \\P\{Z=z_k\}=P{φ(X,Y)=Z_k}=∑_{φ(xi,yj)=z_k}P\{X=x_i,Y=y_j\},k=1,2...∈N^* \\{\text{若有同一}}φ(x_i,y_j){\text{输出对应不同的}}x_iy_j{\text{输入,则必须将不同的输入所属的}}P\{X=x_i,Y=y_j\}{\text{合并}}{\text{即}}∑P\{X=x_i,Y=y_j\} 设随机变量(X,Y)为二维离散型随机变量,分布律为:P{X=xi,Y=yj}=Pij,i,j=1,2,...,z=φ(x,y)为二元函数,Z=φ(X,Y)为一维离散型随机变量,则随机变量Z=φ(X,Y)的分布律为:P{Z=zk}=Pφ(X,Y)=Zk=φ(xi,yj)=zkP{X=xi,Y=yj},k=1,2...N若有同一φ(xi,yj)输出对应不同的xiyj输入,则必须将不同的输入所属的P{X=xi,Y=yj}合并P{X=xi,Y=yj}

两个连续随机变量的分布

1.Z=X+Y分布

设二维连续随机变量(X,Y)的概率密度为 f ( x , y ) 则 Z = X + Y 的概率密度为 f Z ( x , y ) = ∫ − ∞ + ∞ f ( x , z − x ) d x 或 f Z ( x , y ) = ∫ − ∞ + ∞ f ( z − y , y ) d y 且由概率密度函数定义可知: f Z ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x 若当随机变量X,Y彼此独立,则有: f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x f Z ( z ) = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y {\text{设二维连续随机变量(X,Y)的概率密度为}}f(x,y){\text{则}}Z=X+Y{\text{的概率密度为}} \\f_Z(x,y)=∫_{-∞}^{+∞}f(x,z-x)dx \\{\text{或}} \\f_Z(x,y)=∫_{-∞}^{+∞}f(z-y,y)dy{\text{且由概率密度函数定义可知:}} \\f_Z(z)=∫_{-∞}^{+∞}f(z-y,y)dyf_Z(z)=∫_{-∞}^{+∞}f(x,z-x)dx{\text{若当随机变量X,Y彼此独立,则有:}} \\f_Z(z)=∫_{-∞}^{+∞}f_X(x)f_Y(z-x)dxf_Z(z)=∫_{-∞}^{+∞}f_X(z-y)f_Y(y)dy 设二维连续随机变量(X,Y)的概率密度为f(x,y)Z=X+Y的概率密度为fZ(x,y)=+f(x,zx)dxfZ(x,y)=+f(zy,y)dy且由概率密度函数定义可知:fZ(z)=+f(zy,y)dyfZ(z)=+f(x,zx)dx若当随机变量XY彼此独立,则有:fZ(z)=+fX(x)fY(zx)dxfZ(z)=+fX(zy)fY(y)dy

2.M=max(X,Y)与N=Min(X,Y)

若有随机变量X,Y相互独立,其分布函数为 F x ( x ) , F y ( y ) , M = m a x ( X , Y ) , N = M i n ( X , Y ) , 则 F M ( z ) = P { M ≤ z } = P { m a x ( X , Y ) ≤ z } = P { X ≤ z , Y ≤ z } = P { X ≤ z } P { Y ≤ z } = F x ( z ) F Y ( z ) . ∃ F M ( z ) = F X ( z ) F Y ( z ) f M ( z ) = F ′ M ( z ) = f X ( z ) F Y ( z ) + F X ( z ) f y ( z ) F N ( z ) = P { N ≤ z } = P { m i n ( X , Y ) ≤ Z } = 1 − P { m i n ( X , Y ) > Z } = 1 − P { X > z , Y > z } = 1 − P { X > z , Y > z } = 1 − P { X > z } P { Y > z } = 1 − [ 1 − F X ( z ) ] [ 1 − F y ( z ) ] ∃ F N ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] f N ( z ) = F N ′ ( x ) = f X ( z ) [ 1 − F Y ( z ) ] + [ 1 − F X ( z ) ] f Y ( z ) 由此可推广到当n个彼此独立的随机变量 X i , i ∈ { 1 , 2 , 3.... n } 且有相同的分布函数 F ( x ) M = m a x ( X i ) , N = m i n ( X i ) 则有以下特性: F M ( z ) = [ F ( z ) ] n f M ( z ) = n [ F ( z ) ] n − 1 f ( z ) F N ( z ) = 1 − [ 1 − F ( z ) ] n f N ( z ) = n [ 1 − F ( z ) ] n − 1 f ( z ) {\text{若有随机变量X,Y相互独立,其分布函数为}}F_x(x),F_y(y),M=max(X,Y),N=Min(X,Y),{\text{则}} \\F_M(z)=P\{M≤z\}=P\{max(X,Y)≤z\} \\=P\{X≤z,Y≤z\} \\=P\{X≤z\}P\{Y≤z\} \\=F_x(z)F_Y(z). \\∃F_M(z)=F_X(z)F_Y(z)f_M(z)=F'M(z)=f_X(z)F_Y(z)+F_X(z)f_y(z) \\F_N(z)=P\{N≤z\}=P\{min(X,Y)≤Z\} \\=1-P\{min_(X,Y)>Z\}=1-P\{X>z,Y>z\}=1-P\{X>z,Y>z\}=1-P\{X>z\}P\{Y>z\}=1-[1-F_X(z)][1-F_y(z)] \\∃F_N(z)=1-[1-F_X(z)][1-F_Y(z)]f_N(z)=F_N'(x)=f_X(z)[1-F_Y(z)]+[1-F_X(z)]f_Y(z) \\{\text{由此可推广到当n个彼此独立的随机变量}}X_i,i∈\{1,2,3....n\} \\{\text{且有相同的分布函数}}F(x) \\M=max(X_i),N=min(X_i){\text{则有以下特性:}} \\F_M(z)=[F(z)]^nf_M(z)=n[F(z)]^{n-1}f(z)F_N(z)=1-[1-F(z)]^nf_N(z)=n[1-F(z)]^{n-1}f(z) 若有随机变量X,Y相互独立,其分布函数为Fx(x),Fy(y),M=max(X,Y),N=Min(X,Y),FM(z)=P{Mz}=P{max(X,Y)z}=P{Xz,Yz}=P{Xz}P{Yz}=Fx(z)FY(z).FM(z)=FX(z)FY(z)fM(z)=FM(z)=fX(z)FY(z)+FX(z)fy(z)FN(z)=P{Nz}=P{min(X,Y)Z}=1P{min(X,Y)>Z}=1P{X>z,Y>z}=1P{X>z,Y>z}=1P{X>z}P{Y>z}=1[1FX(z)][1Fy(z)]FN(z)=1[1FX(z)][1FY(z)]fN(z)=FN(x)=fX(z)[1FY(z)]+[1FX(z)]fY(z)由此可推广到当n个彼此独立的随机变量Xi,i{1,2,3....n}且有相同的分布函数F(x)M=max(Xi),N=min(Xi)则有以下特性:FM(z)=[F(z)]nfM(z)=n[F(z)]n1f(z)FN(z)=1[1F(z)]nfN(z)=n[1F(z)]n1f(z)

随机变量数字特征

数学期望(Average)

期望的概念

数学期望相当于平均值,用在多次试验的结果求和后分上总实验次数得出该试验的数学期望 常有用随机变量X代表试验结果,对应事件的数字标号为K,若有l<k<h, P { X = k } 的分布律 则用于求数学期望的表达式应为: ∑ k = l h k P k {\text{数学期望相当于平均值,用在多次试验的结果求和后分上总实验次数得出该试验的数学期望}} \\{\text{常有用随机变量X代表试验结果,对应事件的数字标号为K,若有l<k<h,}}P\{X=k\}{\text{的分布律}} \\{\text{则用于求数学期望的表达式应为:}}∑_{k=l}^hkP_k 数学期望相当于平均值,用在多次试验的结果求和后分上总实验次数得出该试验的数学期望常有用随机变量X代表试验结果,对应事件的数字标号为K,若有l<k<h,P{X=k}的分布律则用于求数学期望的表达式应为:k=lhkPk

离散型随机变量的期望

设有随机变量X,其分布律为: P { X + x k } , k = 1 , 2 , 3... ∈ N ∗ 若级数 ∑ x k = 1 ∞ x k P k 为绝对收敛,则称 ∑ x k = 1 ∞ x k P k 为随机变量X的数学期望,简称期望,记做: E ( X ) = ∑ x k = 1 ∞ x k P k 若级数不收敛,则其分布律数学期望 E ( x ) 不存在 {\text{设有随机变量X,其分布律为:}}P\{X+x_k\},k=1,2,3...∈N^* \\{\text{若级数}}∑_{x_k=1}^∞x_kP_k{\text{为绝对收敛,则称}}∑_{x_k=1}^∞x_kP_k{\text{为随机变量X的数学期望,简称期望,记做:}} \\E(X)=∑_{x_k=1}^∞x_kP_k{\text{若级数不收敛,则其分布律数学期望}}E(x){\text{不存在}} 设有随机变量X,其分布律为:P{X+xk},k=1,2,3...N若级数xk=1xkPk为绝对收敛,则称xk=1xkPk为随机变量X的数学期望,简称期望,记做:E(X)=xk=1xkPk若级数不收敛,则其分布律数学期望E(x)不存在

连续型随机变量的期望

X为连续型随机变量,其概率密度函数为 f ( x ) 若 ∫ − ∞ + ∞ x f ( x ) d x 绝对收敛,则称其为X的数学期望,简称期望或均值,记做 E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x 否则称X的数学期望不存在 {\text{X为连续型随机变量,其概率密度函数为}}f(x) \\{\text{若}}∫_{-∞}^{+∞}xf(x)dx{\text{绝对收敛,则称其为X的数学期望,简称期望或均值,记做}} \\E(X)=∫_{-∞}^{+∞}xf(x)dx \\{\text{否则称X的数学期望不存在}} X为连续型随机变量,其概率密度函数为f(x)+xf(x)dx绝对收敛,则称其为X的数学期望,简称期望或均值,记做E(X)=+xf(x)dx否则称X的数学期望不存在

离散型随机变量的函数期望

设有离散型随机变量X,Y,存在 P { X = x i } = P k , k = 1 , 2 , . . . ∈ N ∗ Y = g ( X ) , 若级数 ∑ k = 1 ∞ g ( x k ) P k 绝对收敛则: E ( Y ) = E [ g ( x ) ] = ∑ k = 1 ∞ g ( x k ) P k {\text{设有离散型随机变量X,Y,存在}}P\{X=x_i\}=P_k,k=1,2,...∈N^* \\Y=g(X),{\text{若级数}}∑^{∞}_{k=1}g(x_k)P_{k}{\text{绝对收敛}}{\text{则:}} \\E(Y)=E[g(x)]=∑^{∞}_{k=1}g(x_k)P_{k} 设有离散型随机变量XY,存在P{X=xi}=Pk,k=1,2,...NY=g(X),若级数k=1g(xk)Pk绝对收敛则:E(Y)=E[g(x)]=k=1g(xk)Pk

离散型二维随机变量的函数期望

P { X = X i , Y = y j } = P i j , i , j = 1 , 2 , 3... ∈ N ∗ 若 Z = φ ( X , Y ) , 若级数 ∑ i = 1 + ∞ ∑ j = 1 + ∞ φ ( x i , y j ) P i j 绝对收敛,则: E ( Z ) = E [ φ ( X , Y ) ] = ∑ i = 1 + ∞ ∑ j = 1 + ∞ φ ( x i , y j ) P i j P\{X=X_i,Y=y_j\}=P_{ij},i,j=1,2,3...∈N* \\{\text{若}}Z=φ(X,Y),{\text{若级数}}∑^{+∞}_{i=1}∑^{+∞}_{j=1}φ(x_i,y_j)P_{ij} \\{\text{绝对收敛,则:}} \\E(Z)=E[φ(X,Y)]=∑^{+∞}_{i=1}∑^{+∞}_{j=1}φ(x_i,y_j)P_{ij} P{X=Xi,Y=yj}=Pij,i,j=1,2,3...NZ=φ(X,Y),若级数i=1+j=1+φ(xi,yj)Pij绝对收敛,则:E(Z)=E[φ(X,Y)]=i=1+j=1+φ(xi,yj)Pij

连续型随机变量的函数期望

设X为连续型随机变量,其概率密度为f(x),随机变量Y=g(X),函数y=g(x)为连续函数 若积分 ∫ − ∞ + ∞ g ( x ) f ( x ) d x 绝对收敛,则: E ( Y ) = E ( g ( x ) ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x {\text{设X为连续型随机变量,其概率密度为f(x),随机变量Y=g(X),函数y=g(x)为连续函数}} \\{\text{若积分}}∫_{-∞}^{+∞}g(x)f(x)dx{\text{绝对收敛,则:}} \\E(Y)=E(g(x))=∫_{-∞}^{+∞}g(x)f(x)dx X为连续型随机变量,其概率密度为f(x),随机变量Y=g(X),函数y=g(x)为连续函数若积分+g(x)f(x)dx绝对收敛,则:E(Y)=E(g(x))=+g(x)f(x)dx

连续型二维随机变量的函数期望

设 Z = φ ( X , Y ) 为二维随机变量,其概率密度为 f ( x , y ) 若有 ∫ − ∞ + ∞ ∫ − ∞ + ∞ φ ( x , y ) f ( x , y ) d z 绝对收敛 则称(X,Y)数学期望存在,且为 E ( Z ) = E ( φ ( x , y ) ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ φ ( x , y ) f ( x , y ) d x d y {\text{设}}Z=φ(X,Y){\text{为二维随机变量,其概率密度为}}f(x,y){\text{若有}}∫_{-∞}^{+∞}∫_{-∞}^{+∞} \\φ(x,y)f(x,y)dz{\text{绝对收敛}} \\{\text{则称(X,Y)数学期望存在,且为}}E(Z)=E(φ(x,y))=∫_{-∞}^{+∞}∫_{-∞}^{+∞}φ(x,y)f(x,y)dxdy Z=φ(X,Y)为二维随机变量,其概率密度为f(x,y)若有++φ(x,y)f(x,y)dz绝对收敛则称(X,Y)数学期望存在,且为E(Z)=E(φ(x,y))=++φ(x,y)f(x,y)dxdy

数学期望的性质

若有常数c,随机变量X ∃ E ( X ) : ( 1 ) E ( c ) = c ( 2 ) E ( c X ) = c E ( x ) ( 3 ) E ( X ± Y ) = E ( X ) ± E ( Y ) ( 4 ) 若X,Y彼此独立,则 E ( X Y ) = E ( X ) E ( Y ) {\text{若有常数c,随机变量X}}∃E(X): \\(1)E(c)=c \\(2)E(cX)=cE(x) \\(3)E(X±Y)=E(X)±E(Y) \\(4){\text{若X,Y彼此独立,则}}E(XY)=E(X)E(Y) 若有常数c,随机变量XE(X):(1)E(c)=c(2)E(cX)=cE(x)(3)E(X±Y)=E(X)±E(Y)(4)XY彼此独立,则E(XY)=E(X)E(Y)

方差与标准差

数学期望一定程度上体现了随机变量的平均值,而在不同的数学标号下 实验的输出与数学期望的预测存在程度不同的差距,有些区域差距较小 随机变量取值几乎在期望附近而有些区域则相反,故我们想用一种算法 体现期望与随机变量实际取值偏离程度,故有 E ( [ X − E ( X ) ] 2 ) {\text{数学期望一定程度上体现了随机变量的平均值,而在不同的数学标号下}} \\{\text{实验的输出与数学期望的预测存在程度不同的差距,有些区域差距较小}} \\{\text{随机变量取值几乎在期望附近而有些区域则相反,故我们想用一种算法}} \\{\text{体现期望与随机变量实际取值偏离程度,故有}}E([X-E(X)]^2) 数学期望一定程度上体现了随机变量的平均值,而在不同的数学标号下实验的输出与数学期望的预测存在程度不同的差距,有些区域差距较小随机变量取值几乎在期望附近而有些区域则相反,故我们想用一种算法体现期望与随机变量实际取值偏离程度,故有E([XE(X)]2)

方差的定义

设有随机变量X,若 ∃ E ( [ X − E ( X ) ] 2 ) 则称 E ( [ X − E ( x ) ] 2 ) 为变量X的方差,记做 D ( X ) = E ( [ X − E ( X ) ] 2 ) D ( X ) 称之为均方差或标准差 {\text{设有随机变量X,若}}∃E([X-E(X)]^2) \\{\text{则称}}E([X-E(x)]^2){\text{为变量X的方差,记做}} \\D(X)=E([X-E(X)]^2) \\\sqrt{D(X)}{\text{称之为均方差或标准差}} 设有随机变量X,E([XE(X)]2)则称E([XE(x)]2)为变量X的方差,记做D(X)=E([XE(X)]2)D(X) 称之为均方差或标准差

离散型随机变量方差

若有离散型随机变量X存在 P { X = x i } = P i , i = 1 , 2 , 3... ∈ N ∗ 且期望存在,则其方差为 D ( x ) = ∑ i = 1 ∞ [ x i − E ( X ) ] 2 p i {\text{若有离散型随机变量X存在}}P\{X=x_i\}=P_i,i=1,2,3...∈N^* \\{\text{且期望存在,则其方差为}}D(x)=∑_{i=1}^∞[x_i-E(X)]^2p_i \\ 若有离散型随机变量X存在P{X=xi}=Pi,i=1,2,3...N且期望存在,则其方差为D(x)=i=1[xiE(X)]2pi

连续型随机变量方差

若X是连续型随机变量,f(x)为其概率密度,则其方差 D ( X ) = ∫ − ∞ + ∞ [ x − E ( X ) ] 2 f ( x ) d x {\text{若X是连续型随机变量,f(x)为其概率密度,则其方差}} \\D(X)=∫_{-∞}^{+∞}[x-E(X)]^2f(x)dx X是连续型随机变量,f(x)为其概率密度,则其方差D(X)=+[xE(X)]2f(x)dx

方差的性质

D ( c ) = 0 D ( c X ) = c 2 D ( X ) 若X,Y彼此独立, D ( X ± Y ) = D ( X ) + D ( Y ) D ( X ) = E ( X 2 ) − E ( X ) 2 D(c)=0 \\D(cX)=c^2D(X) \\{\text{若X,Y彼此独立,}}D(X±Y)=D(X)+D(Y) \\D(X)=E(X^2)-E(X)^2 D(c)=0D(cX)=c2D(X)XY彼此独立,D(X±Y)=D(X)+D(Y)D(X)=E(X2)E(X)2

几种常用的分布和方差

(0-1)分布

若随机变量X服从(0,1)分布,则 E ( X ) = p , D ( X ) = p ( 1 − p ) {\text{若随机变量X服从(0,1)分布,则}}E(X)=p,D(X)=p(1-p) 若随机变量X服从(0,1)分布,则E(X)=p,D(X)=p(1p)

二项分布

若随机变量 X   B ( n , p ) 则 E ( X ) = n p , D ( X ) = n p ( 1 − p ) {\text{若随机变量}}X~B(n,p){\text{则}}E(X)=np,D(X)=np(1-p) 若随机变量X B(n,p)E(X)=np,D(X)=np(1p)

泊松分布

若随机变量 X   P ( λ ) , λ > 0 , D ( X ) = λ , E ( λ ) = λ 2 + λ {\text{若随机变量}}X~P(λ),λ>0,D(X)=λ,E(λ)=λ^2+λ 若随机变量X P(λ),λ>0,D(X)=λ,E(λ)=λ2+λ

几何分布

若随机变量 X   G ( p ) , ∃ E ( X ) = 1 p , D ( X ) = 1 − p P 2 {\text{若随机变量}}X~G(p),∃E(X)=\frac{1}{p},D(X)=\frac{1-p}{P^2} 若随机变量X G(p),E(X)=p1,D(X)=P21p

均匀分布

若随机变量X  U ( a , b ) , ( a < b ) , ∃ E ( X ) = a + b 2 , D ( X ) = ( b − a ) 2 12 {\text{若随机变量X~}}U(a,b),(a<b),∃E(X)=\frac{a+b}{2},D(X)=\frac{(b-a)^2}{12} 若随机变量X U(a,b),(a<b),E(X)=2a+b,D(X)=12(ba)2

指数分布

若随机变量X  E ( λ > 0 ) , 则 E ( X ) = 1 λ , D ( X ) = 1 λ 2 {\text{若随机变量X~}}E(λ>0),{\text{则}}E(X)=\frac{1}{λ},D(X)=\frac{1}{λ^2} 若随机变量X E(λ>0),E(X)=λ1,D(X)=λ21

正太分布

若随机变量 X   N ( μ , σ 2 ) ∃ E ( X ) = μ , D ( X ) = σ 2 {\text{若随机变量}}X~N(μ,σ^2)∃E(X)=μ,D(X)=σ^2 若随机变量X N(μ,σ2)E(X)=μ,D(X)=σ2

协方差与相关系数

协方差

若随机变量X,Y相互独立,则: E { E [ X − E ( X ) ] E [ Y − E ( Y ) ] } = 0 反之若 E { E [ X − E ( X ) ] E [ Y − E ( Y ) ] } ≠ 0 则X,Y必定不独立 若二维随机变量,存在关系 E { E [ X − E ( X ) ] E [ Y − E ( Y ) ] } 则称此关系为X,Y的协方差,记做: C o v ( X , Y ) = E [ X − E ( X ) ] E [ Y − E ( Y ) ] 若有二维离散型随机变量 P { X = X i , Y = Y j } , i , j = 1 , 2 , . . . ∈ N ∗ 则 C o v ( X , Y ) = ∑ i = 1 ∞ ∑ j = 1 ∞ E ( [ X − E ( X ) ] ) E [ Y − E ( Y ) ] ) p i j 若有(X,Y)为二维连续型随机变量,其概率密度为 f ( x , y ) 则 C o v ( x , y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ E ( [ X − E ( X ) ] ) E [ Y − E ( Y ) ] ) f ( x , y ) d x d y {\text{若随机变量X,Y相互独立,则:}}E\{E[X-E(X)]E[Y-E(Y)]\}=0 \\{\text{反之若}}E\{E[X-E(X)]E[Y-E(Y)]\}≠0{\text{则X,Y必定不独立}} \\{\text{若二维随机变量,存在关系}}E\{E[X-E(X)]E[Y-E(Y)]\} \\{\text{则称此关系为X,Y的协方差,记做:}}Cov(X,Y)=E{[X-E(X)]}E{[Y-E(Y)]} \\{\text{若有二维离散型随机变量}}P\{X=X_i,Y=Y_j\},i,j=1,2,...∈N^* \\{\text{则}} \\Cov(X,Y)=∑^∞_{i=1}∑^∞_{j=1}E([X-E(X)])E[Y-E(Y)])p_{ij}{\text{若有(X,Y)为二维连续型随机变量,其概率密度为}}f(x,y){\text{则}} \\Cov(x,y)=∫_{-∞}^{+∞}∫_{-∞}^{+∞}E([X-E(X)])E[Y-E(Y)])f(x,y)dxdy 若随机变量X,Y相互独立,则:E{E[XE(X)]E[YE(Y)]}=0反之若E{E[XE(X)]E[YE(Y)]}=0XY必定不独立若二维随机变量,存在关系E{E[XE(X)]E[YE(Y)]}则称此关系为XY的协方差,记做:Cov(X,Y)=E[XE(X)]E[YE(Y)]若有二维离散型随机变量P{X=Xi,Y=Yj},i,j=1,2,...NCov(X,Y)=i=1j=1E([XE(X)])E[YE(Y)])pij若有(X,Y)为二维连续型随机变量,其概率密度为f(x,y)Cov(x,y)=++E([XE(X)])E[YE(Y)])f(x,y)dxdy

性质

C o v ( X , Y ) = C o v ( Y , X ) C o v ( a X , b Y ) = a b C o v ( X , Y ) C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) D ( X ± Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) Cov(X,Y)=Cov(Y,X) \\Cov(aX,bY)=abCov(X,Y) \\Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) \\Cov(X,Y)=E(XY)-E(X)E(Y) \\D(X±Y)=D(X)+D(Y)+2Cov(X,Y) Cov(X,Y)=Cov(Y,X)Cov(aX,bY)=abCov(X,Y)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)Cov(X,Y)=E(XY)E(X)E(Y)D(X±Y)=D(X)+D(Y)+2Cov(X,Y)

相关系数
随机变量的标准化

【1】设随机变量X的期望为E(X),方差为 D ( X ) > 0 ,则可引入新随机变量 X ∗ = X − E ( X ) D ( X ) 则有 E ( X ∗ ) = 0 , D ( X ∗ ) = 1 称 X ∗ 为X标准化后的随机变量 【2】设(X,Y)为二维随机变量,若 E { [ X − E ( X ) D ( X ) ] [ Y − E ( Y ) D ( Y ) ] } 存在 则称其为X与Y的相关系数,记为 ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) , D ( X ) > 0 , D ( Y ) > 0 可以看出,X,Y相关系数与 X ∗ , Y ∗ 的协方差相等,即: ρ X Y = C o v ( X ∗ , Y ∗ ) = E { [ X ∗ − E ( X ∗ ) ] [ Y ∗ − E ( Y ∗ ) ] } = E { [ X − E ( X ) D ( X ) ] [ Y − E ( Y ) D ( Y ) ] } = C o v ( X , Y ) D ( X ) D ( Y ) {\text{【1】设随机变量X的期望为E(X),方差为}}D(X)>0{\text{,则可引入新随机变量}} \\X^*=\frac{X-E(X)}{\sqrt{D(X)}} \\{\text{则有}}E(X^*)=0,D(X^*)=1 \\{\text{称}}X^*{\text{为X标准化后的随机变量}} \\{\text{【2】设(X,Y)为二维随机变量,若}}E\{[\frac{X-E(X)}{\sqrt{D(X)}}][\frac{Y-E(Y)}{\sqrt{D(Y)}}]\}{\text{存在}} \\{\text{则称其为X与Y的相关系数,记为}} \\ρ_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}},D(X)>0,D(Y)>0{\text{可以看出,X,Y相关系数与}}X^*,Y^*{\text{的协方差相等,即:}} \\ρ_{XY}=Cov(X^*,Y^*)=E\{[X^*-E(X^*)][Y^*-E(Y^*)]\}=E\{[\frac{X-E(X)}{\sqrt{D(X)}}][\frac{Y-E(Y)}{\sqrt{D(Y)}}]\}=\frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}} 1】设随机变量X的期望为E(X),方差为D(X)>0,则可引入新随机变量X=D(X) XE(X)则有E(X)=0,D(X)=1XX标准化后的随机变量2】设(X,Y)为二维随机变量,若E{[D(X) XE(X)][D(Y) YE(Y)]}存在则称其为XY的相关系数,记为ρXY=D(X)D(Y) Cov(X,Y),D(X)>0,D(Y)>0可以看出,XY相关系数与X,Y的协方差相等,即:ρXY=Cov(X,Y)=E{[XE(X)][YE(Y)]}=E{[D(X) XE(X)][D(Y) YE(Y)]}=D(X)D(Y) Cov(X,Y)

相关系数的性质

【1】 ρ ≤ 1 【2】 ∣ ρ X Y ∣ = 1 充分必要条件是,有常数a,b使 P { Y = a X + b } = 1 {\text{【1】}}ρ≤1 \\{\text{【2】}}|ρ_{XY}|=1{\text{充分必要条件是,有常数a,b使}}P\{Y=aX+b\}=1 \\ 1ρ12ρXY=1充分必要条件是,有常数ab使P{Y=aX+b}=1

不相关

若 ρ X Y = 0 , 则称X与Y不相关 二维正太随机变量的不相关与独立等价,此外的不相关并不等于独立 {\text{若}}ρ_{XY}=0,{\text{则称X与Y不相关}} \\{\text{二维正太随机变量的不相关与独立等价,此外的不相关并不等于独立}} ρXY=0,则称XY不相关二维正太随机变量的不相关与独立等价,此外的不相关并不等于独立

矩和协方差矩阵

设X和Y为随机变量: 若 E ( X k ) , K = 1 , 2... 存在,则称 E ( X k ) 为随机变量X的K阶原点矩 若 E { [ X − E ( X ) ] k } , k = 2 , 3... 存在,则称 E { [ X − E ( X ) ] k } 为X的k阶中心矩 若 E ( X k Y l ) , k , l , 1 , 2 , . . . 存在 , 则称 E ( X k Y l ) 为 X 和 Y 的混合原点矩 若 E { [ X − E ( X ) ] k } E { [ X − E ( Y ) ] l } , k , l = 1 , 2 , . . . 存在,则称其为X和Y的 k+l阶混合中心矩 而E(X),D(X),Cov(X,Y),则分别是一阶原点矩,二阶中心矩,和二阶混合中心矩 {\text{设X和Y为随机变量:}} \\{\text{若}}E(X^k),K=1,2...{\text{存在,则称}}E(X^k){\text{为随机变量X的K阶原点矩}} \\{\text{若}} E\{[X-E(X)]^k\},k=2,3...{\text{存在,则称}}E\{[X-E(X)]^k\}{\text{为X的k阶中心矩}} \\{\text{若}}E(X^kY^l),k,l,1,2,...{\text{存在}},{\text{则称}}E(X^kY^l){\text{为}}X{\text{和}}Y{\text{的混合原点矩}} \\{\text{若}}E\{[X-E(X)]^k\}E\{[X-E(Y)]^l\},k,l=1,2,...{\text{存在,则称其为X和Y的}} \\{\text{k+l阶混合中心矩}} \\{\text{而E(X),D(X),Cov(X,Y),则分别是一阶原点矩,二阶中心矩,和二阶混合中心矩}} XY为随机变量:E(Xk),K=1,2...存在,则称E(Xk)为随机变量XK阶原点矩E{[XE(X)]k},k=2,3...存在,则称E{[XE(X)]k}Xk阶中心矩E(XkYl),k,l,1,2,...存在,则称E(XkYl)XY的混合原点矩E{[XE(X)]k}E{[XE(Y)]l},k,l=1,2,...存在,则称其为XYk+l阶混合中心矩E(X),D(X),Cov(X,Y),则分别是一阶原点矩,二阶中心矩,和二阶混合中心矩

协方差矩阵

待定

样本及抽样分布

数理统计的基本概念

总体与简单随机样本

定义1·简单随机样本
实际工作中常取总体的一部分抽出个体进行随机性测试,这个过程在数学中成为随机样本

设随机变量X是总体 X 1 , X 2 . . . X n 是取自总体X的样本,若 X 1 , X 2 , . . . X n , 相互独立且每个 X i 与X同分布 ( i = 1 , 2 , . . . , n ) ,则 X 1 , X 2 . . . X n 称为总体X的简单随机样本 简称样本,n称为样本容量,当Xi抽定时,其取值为样本值,记做 x i {\text{设随机变量X是总体}}X_1,X_2...X_n{\text{是取自总体X的样本,若}}X_1,X_2,...X_n, \\{\text{相互独立且每个}}X_i{\text{与X同分布}}(i=1,2,...,n){\text{,则}}X_1,X_2...X_n{\text{称为}}{\text{总体X的简单随机样本}} \\{\text{简称样本,n称为样本容量,当Xi抽定时,其取值为样本值,记做}}x_i 设随机变量X是总体X1,X2...Xn是取自总体X的样本,若X1,X2,...Xn,相互独立且每个XiX同分布(i=1,2,...,n),则X1,X2...Xn称为总体X的简单随机样本简称样本,n称为样本容量,当Xi抽定时,其取值为样本值,记做xi

统计量与样本数字特征

定义2·统计量

若统计量 X 1... n 为取自X的样本 , x 1... n 为样本值 , g ( X 1... n ) 为样本的函数 , 若 g ( X 1... n ) 不存在任何未知参数,则称 , g ( X 1... n ) 为一个统计量 则称 g ( x i . . . n ) 统计量的观测值 {\text{若统计量}}X_{1...n}{\text{为取自X的样本}},x_{1...n}{\text{为样本值}},g(X_{1...n}){\text{为样本的函数}}, \\{\text{若}}g(X_{1...n}){\text{不存在任何未知参数,则称}},g(X_{1...n}){\text{为一个统计量}} \\{\text{则称}}g({x_{i...n}}){\text{统计量的观测值}} 若统计量X1...n为取自X的样本,x1...n为样本值,g(X1...n)为样本的函数,g(X1...n)不存在任何未知参数,则称,g(X1...n)为一个统计量则称g(xi...n)统计量的观测值

定义3·顺序统计量

设有样本X其样本为 X 1... n 样本值为 x 1... n 引入标准化随机变量X, X ∗ 将其样本值排序,可得 x 1 ∗ ≤ , x 2 ∗ ≤ . . . ≤ x n ∗ 由此可引出随机变量 X k ∗ , k = 1 , 2 , . . . , n 则 X k ∗ 称之为顺序统计量 其中 X n ∗ = m i n ( X k ∗ ) X 1 ∗ = m a x ( X K ∗ ) 称为极值统计量 {\text{设有样本X其样本为}}X_{1...n}{\text{样本值为}}x_{1...n} \\{\text{引入标准化随机变量X,}}X^*{\text{将其样本值排序,可得}} \\x^*_1≤,x^*_2≤...≤x^*_n \\{\text{由此可引出随机变量}}X^*_k,k=1,2,...,n{\text{则}}X^*_k{\text{称之为顺序统计量}} \\{\text{其中}}X^*_n=min(X^*_k)X^*_1=max(X^*_K){\text{称为极值统计量}} 设有样本X其样本为X1...n样本值为x1...n引入标准化随机变量XX将其样本值排序,可得x1,x2...xn由此可引出随机变量Xk,k=1,2,...,nXk称之为顺序统计量其中Xn=min(Xk)X1=max(XK)称为极值统计量

样本的数字特征

设 X 1... n 为取自总体X的样本,则有统计量 X ‾ = 1 n ∑ i = 1 n X i ——样本的均值(期望) S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 ——样本的方差 S = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 ——样本的标准差 A k = 1 n ∑ i = 1 n X i k ——样本的k阶原点矩 ( k = 1 , 2... ) B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k ——样本的k阶中心矩 ( k = 2 , 3 , . . . ) 当X为观测量x时,上述式子符号全部小写即可 {\text{设}}X_{1...n}{\text{为取自总体X的样本,则有统计量}} \\\overline{X}=\frac{1}{n}∑_{i=1}^nX_i{\text{——样本的均值(期望)}} \\S^2=\frac{1}{n-1}∑_{i=1}^n(X_i-\overline{X})^2{\text{——样本的方差}} \\S=\sqrt{\frac{1}{n-1}∑^n_{i=1}(X_i-\overline{X})^2}{\text{——样本的标准差}} \\A_k=\frac{1}{n}∑^n_{i=1}X^k_i{\text{——样本的k阶原点矩}}(k=1,2...) \\B_k=\frac{1}{n}∑^n_{i=1}(X_i-\overline{X})^k{\text{——样本的k阶中心矩}}(k=2,3,...){\text{当X为观测量x时,上述式子符号全部小写即可}} X1...n为取自总体X的样本,则有统计量X=n1i=1nXi——样本的均值(期望)S2=n11i=1n(XiX)2——样本的方差S=n11i=1n(XiX)2 ——样本的标准差Ak=n1i=1nXik——样本的k阶原点矩(k=1,2...)Bk=n1i=1n(XiX)k——样本的k阶中心矩(k=2,3,...)X为观测量x时,上述式子符号全部小写即可

定理

【1】设 X 1... n 为总体取自X的样本,且 E ( X ) = μ , D ( X ) = σ 2 > 0 存在 则 E ( X ‾ ) = μ , D ( X ‾ ) = σ 2 n , E ( S 2 ) = σ 2 【2】若总体函数分布为F(x),则样本 X 1... n 的分布函数为 ∏ i = 1 n F ( X i ) 【3】若为离散型随机变量,数字变量i ∈ 随机事件数学标识范围内 若其分布律为 P { X = x i } = P i , 则 X 1... n 分布律为 ∏ i = 1 n P { X i = x i } 【4】若X的分布密度函数为 f ( x ) 则 X 1... n 概率密度为 ∏ i = 1 n f ( x i ) {\text{【1】}}{\text{设}}X_{1...n}{\text{为总体取自X的样本,且}}E(X)=μ,D(X)=σ^2>0{\text{存在}} \\{\text{则}}E(\overline{X})=μ,D(\overline{X})=\frac{σ^2}{n},E(S^2)=σ^2 \\{\text{【2】}}{\text{若总体函数分布为F(x),则样本}}X_{1...n}{\text{的分布函数为}} \\∏_{i=1}^nF(X_i){\text{【3】}}{\text{若为离散型随机变量,数字变量i}}∈{\text{随机事件数学标识范围内}} \\{\text{若其分布律为}}P\{X=x_i\}=P_i,{\text{则}}X_{1...n}{\text{分布律为}}∏_{i=1}^nP\{X_i=x_i\}{\text{【4】}}{\text{若X的分布密度函数为}}f(x){\text{则}}X_{1...n}{\text{概率密度为}}∏_{i=1}^nf(x_i) 1X1...n为总体取自X的样本,且E(X)=μ,D(X)=σ2>0存在E(X)=μ,D(X)=nσ2,E(S2)=σ22若总体函数分布为F(x),则样本X1...n的分布函数为i=1nF(Xi)3若为离散型随机变量,数字变量i随机事件数学标识范围内若其分布律为P{X=xi}=Pi,X1...n分布律为i=1nP{Xi=xi}4X的分布密度函数为f(x)X1...n概率密度为i=1nf(xi)

存疑概念

当实验次数越多,小概率事件越容易连续发生 例如,某阳大米单次吃拉肚子的概率是0.1 则当有100名同学吃某阳大米时,三名同学同桌吃拉肚子的概率 比1000名同学吃某阳大米时,三名同桌同学吃拉肚子的概率要小 {\text{当实验次数越多,小概率事件越容易连续发生}} \\{\text{例如,某阳大米单次吃拉肚子的概率是0.1}} \\{\text{则当有100名同学吃某阳大米时,三名同学同桌吃拉肚子的概率}} \\{\text{比1000名同学吃某阳大米时,三名同桌同学吃拉肚子的概率要小}} 当实验次数越多,小概率事件越容易连续发生例如,某阳大米单次吃拉肚子的概率是0.1则当有100名同学吃某阳大米时,三名同学同桌吃拉肚子的概率1000名同学吃某阳大米时,三名同桌同学吃拉肚子的概率要小

抽样分布

经验分布函数

三个重要分布

χ 2 χ^2 χ2(ka方)分布
(studen)t分布
F分布

抽样分布定理

【定理1】:设总体 X   N ( μ , σ 2 ) , 则 X 1... n 取自总体X的样本,则有: ( 1 ) X ‾   N ( μ , σ 2 n ) ( 2 ) X ‾ 与 S 2 相互独立 ( 3 ) ( n − 1 ) S 2 χ 2 ( n − 1 ) 【定理2】【定理3】 {\text{【定理1】:设总体}}X~N(μ,σ^2),{\text{则}}X_{1...n}{\text{取自总体X的样本,则有:}} \\(1)\overline{X}~N(μ,\frac{σ^2}{n}) \\(2)\overline{X}{\text{与}}S^2{\text{相互独立}} \\(3)\frac{(n-1)S^2}{χ^2(n-1)} \\{\text{【定理2】}}{\text{【定理3】}} 【定理1】:设总体X N(μ,σ2),X1...n取自总体X的样本,则有:(1)X N(μ,nσ2)(2)XS2相互独立(3)χ2(n1)(n1)S2【定理2【定理3

参数估计

参数点的估计

矩估计法

设有随机变量X服从 F ( x , θ 1... l ) , 其中,F为任何一种分布函数 θ 为对应分布函数的未知参数值 l 为输入参数的个数有 X 1... n 为取自X的样本 , 设 ( k = 1 , 2 , . . . l ) 存在 E ( X k ) = μ k ( θ 1... l ) , 则可由样本的K阶原点矩 A k = 1 n ∑ i = 1 n X i k 令 μ k ( θ 1... l ) = A k 得 E ( X k ) = A k , ( θ 必定包含在 E ( X k ) 中 ) 解得 θ k 记做 θ k ∧ 称为 θ k 的矩估计量相应观测值 θ ∧ ( x 1... n ) 称为 θ 的矩估计值 {\text{设有随机变量X服从}}F(x,θ_{1...l}),{\text{其中,F为任何一种分布函数}}θ{\text{为对应分布函数的未知参数值}} \\l{\text{为输入参数的个数}}{\text{有}}X_{1...n}{\text{为取自X的样本}},{\text{设}}(k=1,2,...l) \\{\text{存在}}E(X^k)=μ_k(θ_{1...l}),{\text{则可由样本的K阶原点矩}}A_k=\frac{1}{n}∑^n_{i=1}X^k_i \\{\text{令}}μ_{k}(θ_{1...l})=A_k{\text{得}}E(X^k)=A_k,(θ{\text{必定包含在}}E(X^k){\text{中}}){\text{解得}}θ_k{\text{记做}}θ^{∧}_k{\text{称为}}θ_k{\text{的矩估计量}}{\text{相应观测值}}θ^{∧}(x_{1...n}){\text{称为}}θ{\text{的矩估计值}} 设有随机变量X服从F(x,θ1...l),其中,F为任何一种分布函数θ为对应分布函数的未知参数值l为输入参数的个数X1...n为取自X的样本,(k=1,2,...l)存在E(Xk)=μk(θ1...l),则可由样本的K阶原点矩Ak=n1i=1nXikμk(θ1...l)=AkE(Xk)=Ak,(θ必定包含在E(Xk))解得θk记做θk称为θk的矩估计量相应观测值θ(x1...n)称为θ的矩估计值

最大似然估计量

待定

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值