F5-TTS文本语音合成模型的使用和接口封装,tts合成音频,http流式输出,音频采样率转换

F5-TTS文本语音生成模型

1. F5-TTS的简介

2024年10月8日,上海交通大学团队发布,F5-TTS (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching) 是一款基于扩散Transformer和ConvNeXt V2的文本转语音 (TTS) 模型。F5-TTS旨在生成流畅且忠实的语音,其训练速度和推理速度都得到了提升。 项目还提供了一个名为E2 TTS的模型,它是论文中模型的更接近的复现版本,基于Flat-UNet Transformer。 预训练模型已发布在Hugging Face和Model Scope上。

总而言之,F5-TTS是一个功能强大且易于使用的TTS模型,它结合了扩散模型和流匹配技术,实现了快速训练、快速推理和高质量的语音生成。 其提供的Gradio应用和CLI工具也方便了用户的使用。 项目文档较为完善,方便用户快速上手。

GitHub地址:https://github.com/SWivid/F5-TTS

论文地址:https://arxiv.org/abs/2410.06885

2.模型特点:

快速训练和推理: 相比于其他模型,F5-TTS的训练和推理速度更快。

流畅逼真的语音: 采用流匹配技术,生成更流畅、更自然、更忠实的语音。

基于扩散Transformer和ConvNeXt V2: 利用先进的架构,提升模型性能。

多风格/多说话人生成: 支持多风格和多说话人的语音生成。

提供Gradio应用: 提供友好的图形用户界面,方便用户进行推理和微调。

支持语音聊天: 通过集成Qwen2.5-3B-Instruct模型,支持语音聊天功能。

提供了E2 TTS模型: 作为论文中模型的更接近的复现版本,方便研究者复现论文结果。

Sway Sampling: 一种推理时间的流步骤采样策略,极大地提高了性能。

3.F5-TTS的安装和使用方法

环境配置
  • 使用conda创建虚拟环境
创建一个Python 3.10的conda环境 (也可以使用virtualenv):
conda create -n f5-tts python=3.10
conda activate f5-tts
  • 安装PyTorch和Torchaudio依赖

安装PyTorch和Torchaudio,CUDA版本根据你的显卡选择:
pip install torch==2.3.0+cu118 torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
克隆项目,安装环境依赖
git clone https://github.com/SWivid/F5-TTS.git
cd F5-TTS
pip install -e .

4.推理

  • 提供了三种推理方式:

1、Gradio应用 (Web界面)
运行 f5-tts_infer-gradio 命令启动Gradio应用,支持基本TTS、多风格/多说话人生成和基于Qwen2.5-3B-Instruct的语音聊天。可以使用 --port 和 --host 参数指定端口和主机,使用 --share 参数生成共享链接。

2、CLI推理
使用 f5-tts_infer-cli 命令进行命令行推理。 需要指定模型名称 (–model)、参考音频路径 (–ref_audio)、参考文本 (–ref_text) 和要生成的文本 (–gen_text)。 可以使用配置文件 (-c) 指定参数。 支持多语音生成。

# Launch a Gradio app (web interface)
f5-tts_infer-gradio

# Specify the port/host
f5-tts_infer-gradio --port 7860 --host 0.0.0.0

# Launch a share link
f5-tts_infer-gradio --share
模型文件下载可能出现连接超时等网络问题
  • 访问模型文件镜像站
   https://huggingface.co/SWivid/F5-TTS
  • 访问国内镜像站
  https://hf-mirror.com/

方法:huggingface-cli

huggingface-cli 是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。

  1. 安装依赖
      pip install -U huggingface_hub
  1. 设置环境变量
  • Linux
 export HF_ENDPOINT=https://hf-mirror.com
  • 使用文本编辑器以管理员权限打开/etc/environment文件。你可以使用nano或者vim。例如,使用nano的命令如下:
    • sudo nano /etc/environment
  • 在文件中添加你的环境变量。在你的情况下,添加这行:
HF_ENDPOINT="https://hf-mirror.com"

  • 保存并关闭文件。如果你使用的是nano,可以通过按Ctrl+X,然后按Y确认保存,最后按Enter键来保存文件。
  • 为了使变更立即生效,你可以注销并重新登录,或者在终端中运行以下命令来重载环境变量:
source /etc/environment

这样,HF_ENDPOINT环境变量就被设置为永久的了,并且每次启动时都会自动加载。

3.1 下载模型示例

 huggingface-cli download --resume-download SWivid/F5-TTS --local-dir /home/x1/F5-TTS/ckpts/
 

3.2 下载数据集示例

huggingface-cli download --repo-type dataset --resume-download wikitext --local-dir wikitext

可以添加 --local-dir-use-symlinks False 参数禁用文件软链接,这样下载路径下所见即所得,详细解释请见上面提到的教程。

5.启动Gradio应用 (Web界面)

  • 命令
f5-tts_infer-gradio --port 13066 --host 0.0.0.0

在这里插入图片描述

6.编写一个Python推理的Flask接口程序

import re
from flask import Flask, request, jsonify, send_file
import io
import tempfile
import soundfile as sf
import os
from f5_tts.infer.utils_infer import (
    preprocess_ref_audio_text,
    infer_process,
    remove_silence_for_generated_wav
)
from f5_tts.model import DiT
from f5_tts.infer.utils_infer import load_vocoder, load_model

app = Flask(__name__)

# Paths to model and vocab files
MODEL_PATH = "/home/x1/F5-TTS/ckpts/F5TTS_Base/model_1200000.safetensors"
VOCAB_PATH = "/home/x1/F5-TTS/ckpts/F5TTS_Base/vocab.txt"

# Initialize TTS model and vocoder
F5TTS_ema_model = None
vocoder = load_vocoder()

def load_f5tts_model():
    global F5TTS_ema_model
    if F5TTS_ema_model is None:
        F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
        F5TTS_ema_model = load_model(DiT, F5TTS_model_cfg, MODEL_PATH, vocab_file=VOCAB_PATH)

load_f5tts_model()

def convert_to_chinese_date_bak(text):
    print(" 数字和日期转换操作...")
    """Convert dates and numbers in the text to Chinese format."""
    num_map = {
   "0": "零", "1": "一", "2": "二", "3": "三", "4": "四",
               "5": "五", "6": "六", "7": "七", "8": "八", "9": "九"}
    
    def number_to_chinese(match):
        number = match.group()
        if len(number) == 1:  # 单个数字
            return num_map[number]
        elif len(number) == 2:  # 两位数
            if number.startswith("1"):  # 特殊处理10-19
                return "十" + (num_map[number[1]] if number[1] != "0" else "")
            else:
                return num_map[number[0]] + "十" + (num_map[number[1]] if number[1] != "0" else "")
        else:
            return "".join(num_map[digit] for digit in number)  # 处理三位及以上的数字

    # 将日期格式(如12月、10日)处理为中文读法
    text = re.sub(r'\d+', number_to_chinese, text)
    return text

# 0–9 的汉字对照表
digit_map = "零一二三四五六七八九"

def int_to_chinese(n: int) -> str:
    """
    把 0–9999 的整数转换成口语中文:
      0        → 零
      7        → 七
      10       → 十
      15       → 十五
      20       → 二十
      105      → 一百零五
      5000     → 五千
    """
    assert 0 <= n < 10000, "当前版本仅支持 0–9999"
    if n == 0:
        return "零"

    units = ["", "十", "百", "千"]
    parts = []
    digits = list(map(int, str(n)))

    # 逆序遍历,每次插入“千百十”单位
    for idx, d in enumerate(reversed(digits)):
        if d == 0:
            if parts and parts[-1] != "零":          # 连续零只插一个
                parts.append("零")
        else:
            parts.append(units[idx])
            parts.append(digit_map[d])

    s = "".join(reversed(parts)).rstrip("零")         # 去掉末尾可能残留的零
    return s.replace("一十", "十") if n < 100 else s   # 10–19:省略“一”

def convert_date(match: re.Match) -> str:
    year, month, day = match.groups()
    year_cn = "".join(digit_map[int(d)] for d in year)
    month_cn = int_to_chinese(int(month))
    day_cn   = int_to_chinese(int(day))
    return f"{
     year_cn}{
     month_cn}{
     day_cn}日"

decimal_pat  = re.compile(r"\d+\.\d+")
date_pat     = re.compile(r"(\d{4})年(\d{1,2})月(\d{1,2})日")
integer_pat  = re.compile(r"\d+")

def convert_decimal(match: re.Match) -> str:
    integer, fraction = match.group().split(".")
    int_cn  = int_to_chinese(int(integer))
    frac_cn = "".join(digit_map[int(d)] for d in fraction)
    return f"{
     int_cn}{
     frac_cn}"

def convert_to_chinese(text: str) -> str:
    """把字符串中的数字 / 日期转换为中文口语读法。"""
    # ① 小数
    text = decimal_pat.sub(convert_decimal, text)
    # ② 完整日期
    text = date_pat.sub(convert_date, text)
    # ③ 剩余纯整数
    text = integer_pat.sub(lambda m: int_to_chinese(int(m.group())), text)
    return text



@app.route('/generateAudio', methods=['POST'])
def synthesize():
    # Validate and parse input
    if 'gen_text' not in request.form:
        return jsonify({
   "error": "Missing required parameter: 'gen_text'"}), 400

    gen_text = request.form['gen_text']
    ref_text = request.form.get('ref_text', '')
    ref_audio_path = None

    if 'ref_audio' in request.files:
        # Save uploaded reference audio file to a temporary location
        ref_audio = request.files['ref_audio']
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
            ref_audio.save(temp_audio_file.name)
            ref_audio_path = temp_audio_file.name
    elif 'ref_audio_path' in request.form:
        # Use reference audio path provided in the form
        ref_audio_path = request.form['ref_audio_path']
        if not os.path.exists(ref_audio_path):
            return jsonify({
   "error": f"File not found: {
     ref_audio_path}"}), 400

    if not ref_audio_path:
        return jsonify({
   "error": "Missing required parameter: 'ref_audio' or 'ref_audio_path'"}), 400

    try:
        # Convert dates in gen_text to Chinese format
        gen_text = convert_to_chinese(gen_text)

        # Preprocess reference audio and text
        ref_audio_data, ref_text = preprocess_ref_audio_text(ref_audio_path, ref_text)

        # Synthesize speech
        final_wave, final_sample_rate, _ = infer_process(
            ref_audio_data,
            ref_text,
            gen_text,
            F5TTS_ema_model,
            vocoder,
            cross_fade_duration=0.15,
            speed=1.0,
        )

        # Remove silences from generated audio
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_generated_audio:
            sf.write(temp_generated_audio.name, final_wave, final_sample_rate)
            remove_silence_for_generated_wav(temp_generated_audio.name)
            final_wave, _ = sf.read(temp_generated_audio.name)

        # Convert synthesized audio to bytes
        audio_buffer = io.BytesIO()
        sf.write(audio_buffer, final_wave, final_sample_rate, format='WAV')
        audio_buffer.seek(0)

        return send_file(
            audio_buffer,
            as_attachment=True,
            download_name="synthesized_audio.wav",
            mimetype="audio/wav"
        )

    except Exception as e:
        return jsonify({
   "error": str(e)}), 500


if __name__ == '__main__':
    app.run(host='0.0.0.0', port=13666, debug=True)



  • 注意在读取日期时候会出错,这个地方可以编写一个日期处理函数来解决这个问题。
6.1 启动语音合成的推理程序
  • 进入Python虚拟环境
source /home/x1/anaconda3/bin/activate
conda activate f5-tts
  • 进入程序所在的目录,运行并挂起程序,输出日志到日志文件
# 进入程序所在的目录
cd /home/x1/F5-TTS/src/f5_tts/infer/
# 运行并挂起程序,输出日志到日志文件
nohup python   tts_api.py >> ./tts_api.log &

7.使用go语言编写一个合成声音的接口

  • 创建F5_TTSGe
### 回答1: 我可以提供一个简单的Python抽奖函数的示例:def lottery():import randomnumbers = range(1,50)rn = random.choice(numbers)print('恭喜你,你抽中了%s') % rn ### 回答2: 可以使用Python编写一个简单的抽奖函数。以下是一个示例代码: ```python import random def lottery(participants): return random.choice(participants) participants = ['Amy', 'Bob', 'Charlie', 'David', 'Emma'] winner = lottery(participants) print("中奖者是:", winner) ``` 该函数接受一个参与者列表作为参数,然后使用`random.choice()`函数从列表中随机选择一个中奖者。最后,将中奖者输出到控制台。 在示例中,参与者列表`participants`包含名字为'Amy','Bob','Charlie','David','Emma'的人。运行函数后,将随机选择其中一个人作为中奖者,并将结果输出到控制台。 注意:该函数只是一个简单的示例,实际中可以根据需求进行修改扩展。 ### 回答3: 当用Python编写一个抽奖函数时,我们首先需要确定抽奖的规则参与者的数量。以下是使用Python编写的一个简单的抽奖函数示例: ```python import random def lottery(participants): winner = random.choice(participants) return winner participants = ["Alice", "Bob", "Charlie", "David", "Eve"] winner = lottery(participants) print("The winner is:", winner) ``` 在这个例子中,抽奖函数`lottery`接受一个参与者列表作为输入,并使用`random.choice()`函数从列表中随机选择一个参与者作为中奖者。然后,该函数返回中奖者的名字。 在示例中,我们定义了一个包含5个参与者的列表,分别是“Alice”,“Bob”,“Charlie”,“David”“Eve”。然后,我们调用抽奖函数并将参与者列表作为参数传递给它。最后,我们通过打印语句输出中奖者的名字。 这个抽奖函数可以根据参与者列表进行多次抽奖,每一次的结果都会是随机的。使用Python编写抽奖函数非常简单,只需要利用内置的随机函数列表操作即可实现。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值