F5-TTS 使用与启动教程

F5-TTS 使用与启动教程

F5-TTS Official code for "F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching" F5-TTS 项目地址: https://gitcode.com/gh_mirrors/f5/F5-TTS

1. 项目介绍

F5-TTS 是一个基于深度学习的文本到语音(Text-to-Speech, TTS)转换项目。它使用先进的扩散变换器模型和卷积NeXt V2技术,能够生成流畅且忠于原文的语音输出。项目旨在提供一种性能优越、易于使用的TTS解决方案。

2. 项目快速启动

环境准备

首先,您需要创建一个独立的Python环境,并安装PyTorch以及对应的依赖项。以下是创建Python环境的命令:

conda create -n f5-tts python=3.10
conda activate f5-tts

根据您的硬件配置,安装相应的PyTorch版本:

  • 对于NVIDIA GPU用户:
pip install torch==2.4.0+cu124 torchaudio==2.4.0+cu124 --extra-index-url https://download.pytorch.org/whl/cu124
  • 对于AMD GPU用户(仅限Linux系统):
pip install torch==2.5.1+rocm6.2 torchaudio==2.5.1+rocm6.2 --extra-index-url https://download.pytorch.org/whl/rocm6.2
  • 对于Intel GPU用户:
pip install torch torchaudio --index-url https://download.pytorch.org/whl/test/xpu
  • 对于Apple Silicon用户:
pip install torch torchaudio

安装F5-TTS

您可以通过以下两种方式之一安装F5-TTS:

  1. 作为pip包(如果仅用于推理):
pip install f5-tts
  1. 本地可编辑(如果要进行训练或微调):
git clone https://github.com/SWivid/F5-TTS.git
cd F5-TTS
git submodule update --init --recursive  # 如果需要bigvgan
pip install -e .

运行Docker容器

您还可以通过Docker容器来使用F5-TTS:

  1. 从Dockerfile构建:
docker build -t f5tts:v1
  1. 从GitHub容器仓库运行:
docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main

如果您只想运行Web界面,可以使用以下命令:

docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main f5-tts_infer-gradio --host 0.0.0.0

推理

要使用命令行界面进行推理,请运行以下命令:

f5-tts_infer-cli --model F5TTS_v1_Base --ref_audio "path_to_prompt_wav_file.wav" --ref_text "reference_audio_content" --gen_text "text_to_generate"

如果您想要使用默认设置进行推理,可以省略所有参数:

f5-tts_infer-cli

或者,您也可以使用自己的配置文件:

f5-tts_infer-cli -c custom.toml

3. 应用案例和最佳实践

  • 多风格/多说话人生成:通过指定不同的说话人或风格,可以生成具有独特个性的语音。
  • 自定义推理:支持更多语言,可以通过自定义配置文件来实现。
  • 性能优化:使用TRT-LLM和TensorRT进行推理时,可以获得更快的性能。

4. 典型生态项目

F5-TTS 可以与多种开源项目集成,例如:

  • Hugging Face Accelerate:用于训练和微调的优化工具。
  • Gradio:用于创建Web界面的库,方便展示和测试TTS模型。
  • Triton和TensorRT-LLM:用于推理部署的解决方案,提供更高的性能。

以上就是F5-TTS的简要介绍和快速启动指南。希望对您有所帮助!

F5-TTS Official code for "F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching" F5-TTS 项目地址: https://gitcode.com/gh_mirrors/f5/F5-TTS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪炎墨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值