历史观以及文化和文明的相关知识

历史观念亦可称之为历史观,是人类(包括个体人以及人类群体)对自身历史的一般看法。

文化与文明的区别

  • 文化的定义
    文化(culture)一词源自拉丁语‘cultus’,它指的是培养或提炼某物。文化反映了人们的生活方式,体现在人们所说的语言、所吃的食物、所穿的衣服等方方面面中。换句话说,文化是一群人共同分享的知识、经验和行为的集合,文化可以通过学习而获得。

文化包括艺术、信仰、风俗、传统、道德、节日、价值观等。它可以通过文学、音乐、舞蹈形式、宗教习俗、穿着风格、饮食习惯等外在形式体现。人们可以在不同的地区、宗族、宗教找到不同的文化,文化不存在高低贵贱之分。

  • 文明的定义

文明(civilization)一词源自拉丁语“civis”,意思是“居住在城镇中的人”。文明描述人类社会在文化、工业、科学技术、政府管理等领域达到最高程度的状态以及达到这一程度的过程。

文明是人类发展史上积累起来的有利于更好的认识、适应和改造客观世界的无形知识和有形工具的总和,文明使人类脱离了野蛮状态,它强调通过社会分工和大规模合作,使得人类能尽可能地利用自然资源,以满足自身生存和发展的需求。

  • 主要区别解析

1、文化描述了我们是什么,文明描述了我们拥有什么或我们使用了什么。文化是目的,它没有衡量标准。文明存在衡量标准,因为它是一种手段。

2、文化本身就是目的(价值观和目标),而文明是达到目的的手段(工具和技术)。文化,如信仰、艺术和文学——散文、诗歌或小说等,会给人们带来直接的满足,而文明,如汽车、计算机、智能手机等工具,不会给人们带来直接的满足,它只是有助于达到目的。

3、一个特定地区的文化可以体现在宗教、艺术、舞蹈、文学、风俗、道德、音乐、哲学等方面。而文明体现在法律、行政、基础设施、建筑、科学技术等方面。

4、文明总体趋势是在进步,但文化不是。像如今的诗词和戏剧并不一定比唐宋诗词元曲和莎士比亚的戏剧更好。

5、文明容易传给下一代,但文化传承却需要相当大的精力。文化,例如艺术或文学作品,没有一定的努力就无法理解,理解不同类型的文化需要积累与沉淀。

八大历史观详解

一、全球史观(整体史观)

全球史观是将人类社会的历史作为一个整体来看待的,又称为整体史观。它从世界历史的整体发展和统一性方面考查历史,认为人类历史的发展过程是从分散向整体发展转变的过程。

二、文明史观

文明史观认为,一部人类社会发展史,从本质上说就是人类文明演进的历史。人类创造、积累文明的过程及其所获得的成果是历史的基本内容。人类文明由物质文明、精神文明和政治文明构成,三者在相互作用、协调互补中交替促进、共同发展。

三、现代化史观

现代化也称近代化。它是指由传统社会向现代社会变迁的过程(传统农业社会向工业社会的变迁过程),包括政治上的法制化、民主化,即从人治到法治、从专制到民主等;经济上的工业化,即从传统农业到现代工业、从自然经济到商品经济等;思想文化上的科学化、理性化;社会生活的现代化。现代化是一场全方位的社会变革,其核心是经济的工业化和政治的民主化。

四、社会史观

社会史观主要指从社会的角度观察历史。着重研究历史的结构和进程,注重分析研究广义的社会问题包括政治问题、经济问题、文化问题等所有问题。

五、革命史观

所谓革命史观,就是从现实革命斗争的需要出发,从革命者的立场与视野来研究和品评以往革命斗争史中的事件与人物的一种历史观。

六、唯物史观

历史唯物主义,亦称唯物史观,是人类社会发展一般规律的科学。科学的社会历史观和认识;改造社会的一般方法论,是关于人类社会发展普遍规律的科学,是无产阶级的历史观。历史唯物主义认为,社会历史的发展有其自身固有的客观规律,具有辩证的观点。

七. 生态史观

生态史观认为,评估历史流变中人类的活动,应兼顾人类和自然(包括各物种乃至整个地球)、近期与远期、局部和整体的利益。维护社会系统与自然系统的动态平衡,是能思维有意识的人类不可推御的责任。

八、多元史观运用

内容概要:本文档详细介绍了如何使用MATLAB实现粒子群优化算法(PSO)优化极限学习机(ELM)进行时间序列预测的项目实例。项目背景指出,PSO通过模拟鸟群觅食行为进行全局优化,ELM则以其快速训练强泛化能力著称,但对初始参数敏感。结合两者,PSO-ELM模型能显著提升时间序列预测的准确性。项目目标包括提高预测精度、降低训练时间、处理复杂非线性问题、增强模型稳定性鲁棒性,并推动智能化预测技术的发展。面对数据质量问题、参数优化困难、计算资源消耗、模型过拟合及非线性特征等挑战,项目采取了数据预处理、PSO优化、并行计算、交叉验证等解决方案。项目特点在于高效的优化策略、快速的训练过程、强大的非线性拟合能力广泛的适用性。; 适合人群:对时间序列预测感兴趣的研究人员、数据科学家以及有一定编程基础并希望深入了解机器学习优化算法的工程师。; 使用场景及目标:①金融市场预测,如股票走势预测;②气象预报,提高天气预测的准确性;③交通流量预测,优化交通管理;④能源需求预测,确保能源供应稳定;⑤医疗健康预测,辅助公共卫生决策。; 其他说明:文档提供了详细的模型架构描述MATLAB代码示例,涵盖数据预处理、PSO优化、ELM训练及模型评估等关键步骤,帮助读者全面理解实践PSO-ELM模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值