【经典专题】从模板到本质——背包问题

算法定义

背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

不想看定义?那么接着看下面的通俗栗子:

给定一个nums[]数组,再给定一个背包容量target,你能否用nums[]中的物品装满背包呢?

 
 

问题分类

首先,根据数组中的元素是否可以重复使用,背包问题分为:

0-1背包:数组中的元素不能重复使用
完全背包:数组中的元素可以重复使用

接着,根据题设的目的,背包问题又分为:

考虑顺序的组合问题
不考虑顺序的组合问题
True/False问题
最大最小值问题

 
 

解题模板

幸运的是,背包问题有一套万用的模板,可以帮你解决99%的背包问题!


0-1背包

for (int num : nums) {
	for (int i = target; i >= num; i--) {
		// 状态转移
	}
}

完全背包

for (int num : nums) {
	for (int i = num; i <= target; i++) {
		// 状态转移
	}
}

组合问题

// 初始化
dp[0] = 1

// 状态转移
dp[i] += dp[i - num]

True/False问题

// 初始化
dp[0] = true

// 状态转移
dp[i] |= dp[i - num]

最大最小值问题

// 初始化
Arrays.fill(dp ,逻辑上可以取到的最大/最小值)
dp[0] = 0

// 状态转移
dp[i] = Math.max(dp[i], dp[i - num] + 1)
dp[i] = Math.min(dp[i], dp[i - num] + 1)

 
 

特殊情况

有一个上面的解题模板中没有提到的特殊情况:考虑顺序的组合问题/不考虑顺序的组合问题的区别。

// 不考虑顺序的组合问题
for (num)
	for (i)

// 考虑顺序的组合问题
for (i)
	for (num)

 
 

题目练习

Q1:硬币凑钱

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。
 
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

class Solution {
    public int change(int amount, int[] coins) {
        // 完全背包
        // 不考虑顺序的组合问题
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int coin : coins) {
            for (int i = coin; i <= amount; i++) {
                dp[i] += dp[i - coin];
            }
        }
        return dp[amount];
    }
}
Q2:组合总和

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target
的元素组合的个数。顺序不同的序列被视作不同的组合。
 
输入:nums = [1,2,3], target = 4
输出:7
解释:(1, 1, 1, 1) (1, 1,2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

class Solution {
    public int combinationSum4(int[] nums, int target) {
        // 完全背包
        // 考虑顺序的组合问题
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (int i = 0; i <= target; i++) {
            for (int num : nums) {
                if (i - num >= 0) {
                    dp[i] += dp[i - num];
                }
            }
        }
        return dp[target];
    }
}
Q3:目标和

给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
 
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

/*
 * 隐含的背包问题,下面是推导过程:
 * sum(+)-sum(-)=target
 * sum(+)-sum(-)+sum(+)+sum(-)=target+sum(+)+sum(-)
 * 2*sum(+)=target+sum
 * sum(+)=(target+sum)/2
 */
class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = Arrays.stream(nums).sum();
        if (sum < target || ((sum + target) & 1) == 1) {
            return 0;
        }

        // 0-1背包
        // 不考虑顺序的组合问题
        int tmp = (sum + target) / 2;
        int[] dp = new int[tmp + 1];
        dp[0] = 1;
        for (int num : nums) {
            for (int i = tmp; i >= num; i--) {
                dp[i] += dp[i - num];
            }
        }
        return dp[tmp];
    }
}
Q4:分割等和子集

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
 
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

class Solution {
    public boolean canPartition(int[] nums) {
        int sum = Arrays.stream(nums).sum();
        if ((sum & 1) == 1) {
            return false;
        }
        int target = sum / 2;

        // 0-1背包
        // True/False问题
        boolean[] dp = new boolean[target + 1];
        dp[0] = true;
        for (int num : nums) {
            for (int i = target; i >= num; i--) {
                dp[i] |= dp[i - num];
            }
        }
        return dp[target];
    }
}
Q5:硬币凑钱2.0

给定不同面额的硬币 coins 和一个总金额amount。
编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
你可以认为每种硬币的数量是无限的。
 
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

class Solution {
    public int coinChange(int[] coins, int amount) {
        // 完全背包
        // 最大最小值问题
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, amount + 1);
        dp[0] = 0;
        for (int coin : coins) {
            for (int i = coin; i <= amount; i++) {
                dp[i] = Math.min(dp[i], dp[i - coin] + 1);
            }
        }
        return dp[amount] == amount + 1 ? -1 : dp[amount];
    }
}
Q6:完全平方数

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
 
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
 
输入:n = 13
输出:2
解释:13 = 4 + 9

class Solution {
    public int numSquares(int n) {
        // 完全背包
        // 最大最小值问题
        int[] dp = new int[n + 1];
        Arrays.fill(dp ,100);
        dp[0] = 0;
        for (int num = 1; num <= 100; num++) {
            for (int i = num * num; i <= n; i++) {
                dp[i] = Math.min(dp[i], dp[i - num * num] + 1);
            }
        }
        return dp[n];
    }
}

 
 

原理深究

这里,我们将彻底弄明白上面遗留下的一个问题:为什么对于0-1背包和完全背包,for i 时候的顺序不同呢?具体地说,为什么一个是i++,一个是i–?

让我们回到最初的背包问题——一共有N件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?

这最初是一个二维DP问题。对于0-1背包和完全背包,dp[i][j]的含义有些许不同:

dp[i][j]表示将前i「件」物品装进限重为j的背包可以获得的最大价值(0-1背包)
dp[i][j]表示将前i「种」物品装进限重为j的背包可以获得的最大价值(完全背包)

明确了含义,不难想到状态转移方程:

dp[i][j] = max(dp[i−1][j], dp[i−1][j−w[i]]+v[i])	// 0-1背包
dp[i][j] = max(dp[i−1][j], dp[i][j−w[i]]+v[i]) 		// 完全背包

思考一下,上面两个状态转移方程不同的原因是什么?
很简单,对于0-1背包,第i个物品不能用;对于完全背包,第i个物品可以用。

下面,关键来了!

不难看出,上面的两个状态转移方程都可以通过滚动数组进行降维优化。滚动数组的本质是什么?在不影响其他状态转移的前提下,进行状态值的覆盖,从而复用了数组空间。

0-1背包和完全背包不同的 for i 顺序,正是因为0-1背包避免覆盖,而完全背包需要覆盖。

 
 

写在后面

最后,总结一下这类题目的解题流程吧!

1)拿到题目,判断它是不是背包问题,或者能否转化为背包问题;

2)判断背包问题种类。0-1背包/完全背包影响for循环,组合问题/TrueFalse问题/最大最小值问题影响状态转移方程;

3)如果是组合问题,多判断一下是否需要考虑顺序,这影响for循环的嵌套关系;

4)套用模板即可。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E N D END END

问题描述: 假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解: (1,4,3,2) (1,4,5) (8,2) (3,5,2)。 问题提示: 可利用回溯法的设计思想来解决背包问题。首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。 题目之二: 问题描述: 假设有n件物品,这些物品的重量分别是W1 , W2 , … , Wn,物品的价值分别是V1,V2, …,Vn。求从这n件物品中选取一部分物品的方案,使得所选中的物品的总重量不超过限定的重量W(W<∑Wi, i=1,2,┅,n),但所选中的物品价值之和为最大。 问题提示: 利用递归寻找物品的选择方案。假设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[]中,该方案的总价值保存于变量max_value中。当前正在考察新方案,其物品选择情况保存于数组eop[]中。假设当前方案已考虑了i-1件物品,现在要考虑第i件物品:当前方案已包含的物品的重量之和为tw;因此,若其余物品都选择是可能的话,本方案所能达到的总价值的期望值设为tv。引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值max_value时,继续考察当前方案已无意义,应终止当前方案而去考察下一个方案。 第i件物品的选择有两种可能: ① 物品i被选择。这种可能性仅当包含它不会超过方案总重量的限制才是可行的。选中之后继续递归去考虑其余物品的选择; ② 物品i不被选择。这种可能性仅当不包含物品i也有可能找到价值更大的方案的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值