信号与系统查漏补缺

小细节

欧拉公式
e j w t = c o s ( w t ) + j s i n ( w t ) e − j w t = c o s ( w t ) − j s i n ( w t ) e^{jwt} = cos(wt)+jsin(wt) \\ e^{-jwt} = cos(wt)-jsin(wt) ejwt=cos(wt)+jsin(wt)ejwt=cos(wt)jsin(wt)

复指数信号
 如果指数信号的指数因子是复数,表示为
f ( t ) = K e s t s = σ + j w f(t) = Ke^{st} \\ s=\sigma +jw f(t)=Kests=σ+jw

傅里叶级数
周期信号傅里叶级数展开,以三角函数为基,三角函数基是一组完备的正交函数集
f ( t ) = a 0 + ∑ n = 1 ∞ [ a n c o s ( n w 1 t ) + b n s i n ( n w 1 t ) ] a n = 2 T 1 ∫ t 0 t 0 + T 1 f ( t ) c o s ( n w 1 t ) d t b n = 2 T 1 ∫ t 0 t 0 + T 1 f ( t ) s i n ( n w 1 t ) d t f(t)=a_{0}+ \sum_{n=1}^{\infty}[a_{n}cos(nw_{1}t)+b_{n}sin(nw_{1}t)] \\ a_{n}=\frac{2}{T_1} \int_{t_{0}}^{t_{0}+T_{1}}f(t)cos(nw_{1}t)dt \\ b_{n}=\frac{2}{T_1} \int_{t_{0}}^{t_{0}+T_{1}}f(t)sin(nw_{1}t)dt f(t)=a0+n=1[ancos(nw1t)+bnsin(nw1t)]an=T12t0t0+T1f(t)cos(nw1t)dtbn=T12t0t0+T1f(t)sin(nw1t)dt
 一般我们习惯用指数函数的形式进行表示,用欧拉公式对三角函数进行替换
f ( t ) = a 0 + ∑ n = 1 ∞ [ F ( n w 1 ) e j n w 1 t + F ( − n w 1 ) e − j n w 1 t ] F ( n w 1 ) = 1 2 ( a n + j b n ) f(t) = a_{0} + \sum_{n=1}^{\infty}[F(nw_{1})e^{jnw_{1}t} +F(-nw_{1})e^{-jnw_{1}t} ] \\ F(nw_{1}) = \frac{1}{2}(a_{n}+jb_{n}) f(t)=a0+n=1[F(nw1)ejnw1t+F(nw1)ejnw1t]F(nw1)=21(an+jbn)进一步化简可得
f ( t ) = ∑ n = − ∞ ∞ F ( n w 1 ) e j n w 1 t F n = 1 T 1 ∫ t 0 t 0 + T 1 f ( t ) e − j n 1 w t d t f(t)=\sum_{n=-\infty}^{\infty} F(nw_{1})e^{jnw_{1}t} \\ F_{n} = \frac{1}{T_{1}}\int_{t_{0}}^{t_{0}+T_{1}}f(t)e^{-jn_{1}wt}dt f(t)=n=F(nw1)ejnw1tFn=T11t0t0+T1f(t)ejn1wtdt

傅里叶变换
周期信号基本都满足狄里赫利条件
用周期信号的傅里叶级数通过求极限的方式导除非周期信号频谱的表达式
傅里叶正变换:
F ( w ) = ∫ − ∞ ∞ f ( t ) e − j w t d t F(w) = \int_{-\infty}^{\infty}f(t)e^{-jwt}dt F(w)=f(t)ejwtdt
 根据公式,可以理解为当角频率为 w w w时,信号 f ( t ) f(t) f(t)在在复指数函数 e − j w t e^{-jwt} ejwt上的投影
傅里叶反变换:
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( w ) e j w t d w f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}F(w)e^{jwt}dw f(t)=2π1F(w)ejwtdw

时/频域卷积定理
时: f 1 ( t ) ∗ f 2 ( t ) = F 1 ( w ) F 2 ( w ) f_{1}(t) * f_{2}(t) = F_{1}(w)F_{2}(w) f1(t)f2(t)=F1(w)F2(w)

频: F 1 ( w ) ∗ F 2 ( w ) = 2 π ∫ − ∞ ∞ [ f 1 ( t ) . f 2 ( t ) ] F_{1}(w) * F_{2}(w) = 2\pi\int_{-\infty}^{\infty}[f_{1}(t).f_{2}(t)] F1(w)F2(w)=2π[f1(t).f2(t)]

拉氏变换
引入了衰减因子,使信号收敛,满足狄里赫利条件中绝对可积的要求
考虑导实际问题中,遇到的总是因果信号,所以令信号从0时刻开始,因此积分下限从0开始,也称之为单边拉氏变换
F ( s ) = ∫ 0 ∞ f ( t ) e − ( σ + j w ) t d t f ( t ) = 1 2 π j ∫ σ − j ∞ σ + j ∞ F ( s ) e ( j w + σ ) t d s s = σ + j w F(s) = \int_{0}^{\infty}f(t)e^{-(\sigma+jw)t}dt \\ f(t) = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty}F(s)e^{(jw+\sigma)t} ds \\ s = \sigma+jw F(s)=0f(t)e(σ+jw)tdtf(t)=2πj1σjσ+jF(s)e(jw+σ)tdss=σ+jw

拉氏变换系统函数
在s域中,系统响应R(s)与激励信号E(s),系统函数H(s)满足下式关系:
R ( s ) = E ( s ) H ( s ) R(s) = E(s)H(s) R(s)=E(s)H(s)

Z变换
离散时间系统的Z域分析,其定义可以由抽样信号的拉氏变换引出
X ( Z ) = ∑ n = 0 ∞ x ( n ) z − n z = e s X(Z) = \sum_{n=0}^{\infty}x(n)z^{-n} \\ z=e^s X(Z)=n=0x(n)znz=es

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼带师小弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值