小 A 和小 B 在玩一个游戏。
首先,小 A 写了一个由 0 和 1 组成的序列 S,长度为 N。
然后,小 B 向小 A 提出了 M 个问题。
在每个问题中,小 B 指定两个数 l 和 r,小 A 回答 S[l∼r] 中有奇数个 1 还是偶数个 1。
机智的小 B 发现小 A 有可能在撒谎。
例如,小 A 曾经回答过 S[1∼3] 中有奇数个 1,S[4∼6] 中有偶数个 1,现在又回答 S[1∼6] 中有偶数个 1,显然这是自相矛盾的。
请你帮助小 B 检查这 M 个答案,并指出在至少多少个回答之后可以确定小 A 一定在撒谎。
即求出一个最小的 k,使得 01 序列 S 满足第 1∼k 个回答,但不满足第 1∼k+1 个回答。
输入格式
第一行包含一个整数 N,表示 01 序列长度。
第二行包含一个整数 M,表示问题数量。
接下来 M 行,每行包含一组问答:两个整数 l 和 r,以及回答 even
或 odd
,用以描述 S[l∼r] 中有偶数个 1 还是奇数个 1。
输出格式
输出一个整数 kk,表示 0101 序列满足第 1∼k1∼k 个回答,但不满足第 1∼k+11∼k+1 个回答,如果 0101 序列满足所有回答,则输出问题总数量。
数据范围
N≤109,M≤5000
输入样例:
10
5
1 2 even
3 4 odd
5 6 even
1 6 even
7 10 odd
输出样例:
3
分析:带权并查集+离散化
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N=5e3+10;
vector<int>an,a;
int l[N],r[N],fa[2*N],value[2*N];
string s[N];
int n,m;
int get(int x)
{
return lower_bound(a.begin(),a.end(),x)-a.begin()+1;
}
int find(int x)
{
if(x!=fa[x])
{
int t=fa[x];
fa[x]=find(fa[x]);
value[x]=(value[x]+value[t])%2;
}
return fa[x];
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
cin>>l[i]>>r[i]>>s[i];
an.push_back(l[i]-1);
an.push_back(r[i]);
//an.push_back(r[i]);
}
sort(an.begin(),an.end());
for(int i=0;i<an.size();i++)
{
if(i&&an[i]==an[i-1])continue;
else a.push_back(an[i]);
}
for(int i=1;i<=a.size();i++)fa[i]=i;
for(int i=1;i<=m;i++)
{
int w=0;
if(s[i]=="odd") w=1;
int x=get(l[i]-1),y=get(r[i]);
int xx=find(x),yy=find(y);
if(xx==yy)
{
if((value[x]-value[y]+2)%2!=w)
{
cout<<i-1;
return 0;
}
continue;
}
fa[xx]=yy;
value[xx]=(w+value[y]-value[x]+2)%2;
}
cout<<m;
return 0;
}