239. 奇偶游戏

该博客主要讨论了一个关于01序列的游戏,玩家小A和小B之间的交互。小A给出一个由0和1组成的序列,小B提出询问关于序列中指定区间内1的数量是奇数还是偶数。通过分析小A的回答,博客展示了如何使用带权并查集和离散化来检查小A的回答是否自相矛盾,从而找出小A可能撒谎的最早时刻。
摘要由CSDN通过智能技术生成

小 A 和小 B 在玩一个游戏。

首先,小 A 写了一个由 0 和 1 组成的序列 S,长度为 N。

然后,小 B 向小 A 提出了 M 个问题。

在每个问题中,小 B 指定两个数 l 和 r,小 A 回答 S[l∼r] 中有奇数个 1 还是偶数个 1。

机智的小 B 发现小 A 有可能在撒谎。

例如,小 A 曾经回答过 S[1∼3] 中有奇数个 1,S[4∼6] 中有偶数个 1,现在又回答 S[1∼6] 中有偶数个 1,显然这是自相矛盾的。

请你帮助小 B 检查这 M 个答案,并指出在至少多少个回答之后可以确定小 A 一定在撒谎。

即求出一个最小的 k,使得 01 序列 S 满足第 1∼k 个回答,但不满足第 1∼k+1 个回答。

输入格式

第一行包含一个整数 N,表示 01 序列长度。

第二行包含一个整数 M,表示问题数量。

接下来 M 行,每行包含一组问答:两个整数 l 和 r,以及回答 even 或 odd,用以描述 S[l∼r] 中有偶数个 1 还是奇数个 1。

输出格式

输出一个整数 kk,表示 0101 序列满足第 1∼k1∼k 个回答,但不满足第 1∼k+11∼k+1 个回答,如果 0101 序列满足所有回答,则输出问题总数量。

数据范围

N≤109,M≤5000

输入样例:

10
5
1 2 even
3 4 odd
5 6 even
1 6 even
7 10 odd

输出样例:

3

分析:带权并查集+离散化

代码如下:

#include <bits/stdc++.h>

using namespace std;
const int N=5e3+10;
vector<int>an,a;
int l[N],r[N],fa[2*N],value[2*N];
string s[N];
int n,m;

int get(int x)
{
    return lower_bound(a.begin(),a.end(),x)-a.begin()+1;
}
int find(int x)
{
    if(x!=fa[x])
    {
        int t=fa[x];
        fa[x]=find(fa[x]);
        value[x]=(value[x]+value[t])%2;
    }
    return fa[x];
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        cin>>l[i]>>r[i]>>s[i];
        an.push_back(l[i]-1);
        an.push_back(r[i]);
        //an.push_back(r[i]);
    }
    sort(an.begin(),an.end());
    for(int i=0;i<an.size();i++)
    {
        if(i&&an[i]==an[i-1])continue;
        else a.push_back(an[i]);
    }
    for(int i=1;i<=a.size();i++)fa[i]=i;
    for(int i=1;i<=m;i++)
    {
        int w=0;
        if(s[i]=="odd") w=1;
        int x=get(l[i]-1),y=get(r[i]);
        int xx=find(x),yy=find(y);
        if(xx==yy)
        {
            if((value[x]-value[y]+2)%2!=w)
            {
                cout<<i-1;
                return 0;
            }
            continue;
        }
        fa[xx]=yy;
        value[xx]=(w+value[y]-value[x]+2)%2;
    }
    cout<<m;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值