深度学习中将图片使用transforms.ToTensor()转换后,如何转回来

将图片使用transforms.ToTensor()转换后,如何转回来

在PyTorch中,当你使用transforms.ToTensor()将图片转换为tensor后,你可以使用transforms.ToPILImage()将tensor转换回PIL图片。以下是一个示例,展示了如何进行这两种转换:

from PIL import Image
import torch
from torchvision import transforms

# 创建一个转换器,将PIL图片转换为tensor
to_tensor = transforms.ToTensor()

# 创建一个转换器,将tensor转换回PIL图片
to_pil = transforms.ToPILImage()

# 加载PIL图片
image = Image.open('path_to_your_image.jpg')

# 将PIL图片转换为tensor
# 注意:转换后的tensor的值会被归一化到[0, 1]区间
tensor_image = to_tensor(image)

# 假设我们对tensor_image进行了一些处理
# ...

# 将tensor转换回PIL图片
# 注意:转换后的PIL图片的值会被从[0, 1]区间反归一化到原来的[0, 255]区间
pil_image = to_pil(tensor_image)

# 显示PIL图片
pil_image.show()

在上面的代码中,to_tensor用于将PIL图片转换为PyTorch tensor,同时会对图片的像素值进行归一化处理,使其位于[0, 1]区间。to_pil则用于将PyTorch tensor转换回PIL图片,同时会将像素值从[0, 1]区间反归一化到原来的[0, 255]区间。

请注意,在进行转换时,如果你对tensor进行了一些处理,比如归一化、标准化或者其他一些变换,那么你可能需要在转换回PIL图片之前对tensor进行相应的逆变换,以确保图片的数据显示正确。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值