联邦学习论文阅读:Federated Distillation and Augmentation under Non-IID Private Data

该论文关注终端设备机器学习中的通信效率和非独立同分布(IID)数据问题。提出了联邦蒸馏和联邦增强两种方法。联邦蒸馏通过共享模型输出而非参数来减少通信开销,同时利用对抗生成网络处理非IID数据。联邦增强则使用本地对抗生成模型生成额外数据,缓解数据分布不均。实验表明这两种方法在实际应用中均有效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data

论文链接
(源码没有公开)

1 论文概述

1.1 Abstract

终端设备机器学习可以使用大量终端上的数据进行机器学习模型的训练。在这个过程中存在两个问题:1. 设备之间的通信压力问题(模型越大,需要传送的数据量就越大,会有效率问题,安全问题等);2. 不同设备产生的数据不符合独立同分布(会影响模型的效果)。
基于上述两个问题,论文提出了federated distillation(联邦蒸馏)和federated augmentation(联邦增强)方法,并且通过实验证明了方法的有效性

1.2 Introduction

终端设备机器学习通过交换各个设备间的本地模型的参数(设备间的数据不共享),训练全局模型。而这存在几个问题

  1. 设备间的通信开销于模型的规模存在正相关的关系,不利于训练大规模的模型。
  2. 不同设备间的数据不符合IID,会影响训练效果。

针对第一个问题,论文提出了联邦蒸馏的方法,使得设备间的通信开销取决于模型输出的维度而不是模型的规模;而在执行联邦蒸馏之前,需要对训练数据集进行处理,减小non-IID问题,方法为使用对抗生成网络生成其他分布的数据,使其分布趋于IID。

2. Federated distillation

2.1 模型简介

相较于传统的联邦学习通过共享模型参数以训练全局模型,联邦蒸馏通过共享模型输出的结果logits以训练全局模型。联邦蒸馏,与知识蒸馏有关,在该模型中,每一个终端就是学生,而平均模型是老师,(学生和老师的概念源于知识蒸馏模型),老师只将平均模型的输出logits传给学生,然后学生基于该logits进行模型训练。
但是这种方法的可行性不高,因为老师和学生要基于一样的训练数据进行训练(此时的logits才能与输入对齐),而这不能周期进行,因为不同的设备的数据集是不同的。基于这个问题,论文提出了Algorithm 1(使用蒸馏不仅可以减小通信消耗,还能减小在本地训练模型的消耗)

  • 本地训练阶段:主要是损失函数部分由两部分组成:1. 与真实标签的交叉熵函数;2. 与全局average logits的交叉熵函数(蒸馏);
  • 全局ensemble阶段:基于本地的average logit更新全局average logit

在这里插入图片描述

3. Federated augmentation

3.1 模型简介

要解决数据分布不满足IID的问题,可以对设备的数据集补充标签缺失的数据,但这会造成较大的通信开销,而FAug可以通过对抗生成模型在本地直接补充数据,而不用进行设备间的通信。
对抗生成模型在服务器上进行训练,FAug中的每个设备都能识别数据样本中缺少的标签,然后设备会向服务器传这这些标签的几个数据样本(问题:既然缺少,哪来的样本,可能是数量很少,但不为0)。经过服务器的训练,设备下载生成模型后就可以用来补充自己的数据集了。为了保证数据的隐私,设备不仅会传输target label的数据集,还会传输其他label的数据集(个人理解:如果仅仅传输target label的数据集,可能会通过X推断出y,混入其他数据集会降低这个可能性)。

FD和FAug示意图
在这里插入图片描述

4. Experiment

### 回答1: "Federated learning with non-iid data" 的含义是:在非独立同分布数据(non-iid data)的情况下进行联邦学习联邦学习是一种分布式学习的方法,其特点是模型的训练和更新是在本地设备上进行,而不是在中心服务器上进行。而非独立同分布数据则意味着不同设备之间的数据具有不同的分布和特征,这会对联邦学习的效果造成挑战。因此,在进行联邦学习时,需要考虑如何处理这种情况,以提高模型的准确性和鲁棒性。 ### 回答2: 联邦学习是近年来备受关注的一种机器学习方法,其核心精神是通过多个客户端设备在本地进行数据处理和训练模型,不必将原始数据汇集到一起,避免了隐私泄露和数据传输带来的风险。但实际上,大多数现实场景中的数据并不是独立同分布的(non-iid),多个客户端设备所在的数据分布也极有可能不同,如何在保持原有联邦学习思路的基础上应对非iid数据,也成为了当前研究的热门问题。 目前,学界和产业界对非iid联邦学习的解决方案尝试有很多,其中一些典型的方法包括: 一、联邦聚类(Federated Clustering)。该方法利用监督和非监督的数据聚类模型,对处理不同数据分布的客户端设备进行分类,形成若干个数据分布相似的组,然后在每个组中进行联合学习,对每个组得到的模型结果进行合并。 二、联邦迁移学习(Federated Transfer Learning)。该方法通过在源域数据上进行模型训练和参数更新,再通过一定的方法将已训练的模型迁移到目标域中进行更新和优化,从而使得目标域数据更好地适应模型。 三、混合学习(Federated Hybrid Learning)。该方法结合了联邦学习和分层模型的想法,将多个客户端设备的数据层级化,在相同维度的数据上进行联邦学习,但不同层级内的数据各自训练特定的模型。 以上这些方法都对非iid联邦学习的问题提供了一定的思路和解决方案,在应用场景中也得到了初步的应用。但是,不同于iid数据的不同分布、语义、类别之间的差异使得非iid联邦学习更具挑战性,其数据分布、协作策略、学习算法等方面的问题都需要进一步研究和提高。未来,我们需要不断探索更好、更高效、更准确的非iid联邦学习的方法和方案,应用到各个行业领域提高数据的利用效率和隐私保护水平。 ### 回答3: 联邦学习是一种先进的机器学习技术,它允许多个参与方共同训练一个模型,而不需要将原始数据集集中在单个位置。这种分布式学习的方式可以最大程度地保护用户的数据隐私和安全。 然而,在实际应用中,有时候我们会遇到一些具有不同的分布性质的非IID数据集。因为数据的不均匀和异构性质,使得对于分布在不同的机器上的数据进行联合训练变得更加困难。这种情况也称为不相同的数据偏移或数据漂移。不同分布性质的数据会导致训练模型的性能下降,因为模型无法对不同的数据进行适应。这也使得联合学习更具挑战性。 为了解决这个问题,可以对数据进行采样和重新加权,以便在融合时使每个本地模型对于不同的数据立场相对均衡。一种基于采样的方案是Federated Averaging with Local Adapation(FALA),它是一种高效的算法,它通过对于权值进行本地的调整,减少了由于数据偏移带来的下降的性能。此外,类别抽样和异质性采样也可以用来处理iid 的数据集之间的不相同。在数据偏移情况下,这需要更多的小样本和多轮次迭代。 另一种方法是加入对模型的个性化贡献,即在联合优化时分配不同的权重给本地模型或者对于不同的参与方使用不同的模型。例如,对于基于 神经网络的模型,可以采用逻辑斯蒂回归模型或者线性模型,以提高对于多样性的应对能力。 总而言之,对于不同的非IID数据,需要在联合训练时采用合适的方案,以克服分布不均带来的挑战并获得更好的结果。需要根据不同的实际情况选择最佳的方法,以满足不同的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值