两个独立同分布的指数分布相加服从什么分布

参考博客
假设两个独立变量服从同一指数分布:
X , Y ∼ exp ( λ ) X,Y \sim \text{exp}(\lambda) X,Yexp(λ)
Z = X + Y Z=X+Y Z=X+Y,则Z的累积分布函数可表示为
F Z ( z ) = P r ( Z ≤ z ) = P r ( X + Y ≤ z ) F_Z(z)=Pr(Z \leq z)=Pr(X+Y \leq z) FZ(z)=Pr(Zz)=Pr(X+Yz)
因此,有:
F Z ( z ) = ∫ 0 z ∫ 0 z − x f X ( x ) f Y ( y ) d y d x = ∫ 0 z ∫ 0 z − x λ e − λ x λ e − λ y = ∫ 0 z λ e − λ x ( − 1 λ ) ( e − λ ( z − x ) − e 0 ) d x = − λ ∫ 0 z e − λ z − e − λ x d x = − λ ( z e − λ z + 1 λ e − λ z − 1 λ ) = − λ z e − λ z − e − λ z + 1 \begin{aligned} F_Z(z)&=\int_0^z\int_0^{z-x}f_X(x)f_Y(y)dydx \\ & = \int_0^z\int_0^{z-x}\lambda e^{-\lambda x} \lambda e^{-\lambda y} \\ & = \int_0^z \lambda e^{-\lambda x} (-\frac{1}\lambda)(e^{-\lambda (z-x)}-e^0) dx\\ & =-\lambda \int_0^z e^{-\lambda z}-e^{-\lambda x} dx\\ & =-\lambda(ze^{-\lambda z}+\frac{1}{\lambda}e^{-\lambda z}-\frac{1}{\lambda} )\\ &=-\lambda ze^{-\lambda z}-e^{-\lambda z}+1 \end{aligned} FZ(z)=0z0zxfX(x)fY(y)dydx=0z0zxλeλxλeλy=0zλeλx(λ1)(eλ(zx)e0)dx=λ0zeλzeλxdx=λ(zeλz+λ1eλzλ1)=λzeλzeλz+1
F Z ( z ) F_Z(z) FZ(z)求导即可得到 Z Z Z的概率密度函数
f Z ( z ) = d F Z ( z ) d z = λ 2 z e − λ z f_Z(z)=\frac{dF_Z(z)}{dz}=\lambda ^2 ze^{-\lambda z} fZ(z)=dzdFZ(z)=λ2zeλz
拓展一下,用到了分部积分和洛必达法则
E [ Z ] = ∫ 0 ∞ z f Z ( z ) d z = ∫ 0 ∞ λ 2 z 2 e − λ z d z = − λ z 2 e − λ z ∣ 0 ∞ + ∫ 0 ∞ λ 2 z e − λ z d z = − λ ( 0 − 0 ) + 2 ∫ 0 ∞ − z d ( e − λ z ) = 2 ( − z ) e − λ z ∣ 0 ∞ + 2 ∫ 0 ∞ e − λ z d z = 0 + 2 λ = 2 λ \begin{aligned} E[Z] &=\int_0^\infty zf_Z(z)dz \\ & = \int_0^\infty \lambda ^2 z^2e^{-\lambda z}dz \\ & = -\lambda z^2 e^{-\lambda z}|_0^\infty + \int_0^\infty \lambda 2z e^{-\lambda z}dz \\ &= -\lambda (0-0)+2{\int_0^\infty -z d(e^{-\lambda z})} \\ &=2(-z) e^{-\lambda z}|_0^\infty+2\int_0^\infty e^{-\lambda z} dz \\ &= 0+ \frac{2}{\lambda} \\ &= \frac{2}{\lambda} \end{aligned} E[Z]=0zfZ(z)dz=0λ2z2eλzdz=λz2eλz0+0λ2zeλzdz=λ(00)+20zd(eλz)=2(z)eλz0+20eλzdz=0+λ2=λ2
此时,突然想起, E [ X ] = E [ Y ] = 1 λ E[X]=E[Y]=\frac{1}{\lambda} E[X]=E[Y]=λ1 Z Z Z好像是服从Gamma分布,概率论东西快忘光了。。
参考Gamma分布博客
u是个变量, U ∼ G ( α , β ) U \sim G(\alpha,\beta) UG(α,β),为了和上述变量分开(不得不起了个不顺口的名字)。
f ( u ; α , β ) = β α u α − 1 Γ ( α ) exp ( − β u ) f(u;\alpha,\beta)=\frac{\beta ^\alpha u^{\alpha-1}}{\Gamma(\alpha)}\text{exp}(-\beta u) f(u;α,β)=Γ(α)βαuα1exp(βu)
均值和方差分别为
E [ U ] = α β E[U]=\frac{\alpha}{\beta} E[U]=βα
D [ U ] = α β 2 D[U]=\frac{\alpha}{\beta^2} D[U]=β2α
已知指数分布、卡方分布是特殊的Gamma分布,所以 X , Y ∼ exp ( λ ) X,Y \sim \text{exp}(\lambda) X,Yexp(λ)可以写成 X , Y ∼ G ( 1 , λ ) X,Y \sim G(1,\lambda) X,YG(1,λ) Z ∼ G ( 2 , λ ) Z \sim G(2,\lambda) ZG(2,λ)
D [ Z ] = 2 λ 2 D[Z]=\frac{2}{\lambda ^2} D[Z]=λ22

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值