LRU 缓存

31 篇文章 1 订阅

力扣题目 146. LRU 缓存

实现 LRU 缓存需要用到哈希链表 LinkedHashMap。
LinkedHashMap 是由哈希表和双链表结合而成的,它的结构如下所示。
在这里插入图片描述

用自带的 LinkedHashMap 实现

利用 Java 语言自带的 LinkedHashMap 很容易实现 LRU 缓存。

class LRUCache {
    // 缓存容量
    int cap;
    // 哈希链表
    LinkedHashMap<Integer, Integer> cache = new LinkedHashMap<>();
	
	// 初始化
    public LRUCache(int capacity) {
        this.cap = capacity;
    }
    
    public int get(int key) {
        // 如果不存在这个 key, 返回 -1
        if(!cache.containsKey(key)){
            return -1;
        }
        // 存在这个 key
        // 将该元素提升为最近使用过的
        makeRecently(key);
        return cache.get(key);
    }
    
    public void put(int key, int value) {
        // 已经存在这个 key
        if(cache.containsKey(key)){
            // 修改 value 值
            cache.put(key, value);
            // 将该元素提升为最近使用过的
            makeRecently(key);
            return;
        }
        // 不存在这个 key
        // 如果容量满了
        if(cache.size() == cap){
            // 删除链表头第一个元素(最不常使用的)
            int oldKey = cache.keySet().iterator().next();
            cache.remove(oldKey);
        }
        // 插入新元素
        cache.put(key, value);
    }

    // 将该元素提升为最近使用过的
    private void makeRecently(int key){
        int value = cache.get(key);
        // 删除该元素
        cache.remove(key);
        // 新增该元素
        cache.put(key, value);
    }
}

由于该题是面试高频考点,而面试官希望面试者能自己实现哈希链表,因此下面自己实现一下。

自己实现哈希链表

实现 MyLinkedHashMap

考虑写一个 MyLinkedHashMap 代替 LinkedHashMap。
下面是用 MyLinkedHashMap 代替 LinkedHashMap 的代码,为简化起见,不考虑泛型了,初始化就变成了 MyLinkedHashMap cache = new MyLinkedHashMap<>();
大部分 LinkedHashMap 的方法都保留了,将删除双链表的首元素封装成一个新方法 cache.removeEldest();

class LRUCache {
    // 缓存容量
    int cap;
    // 哈希链表
    MyLinkedHashMap cache = new MyLinkedHashMap();

    public LRUCache(int capacity) {
        this.cap = capacity;
    }
    
    public int get(int key) {
        // 如果不存在这个 key, 返回 -1
        if(!cache.containsKey(key)){
            return -1;
        }
        // 存在这个 key
        // 将该元素提升为最近使用过的
        makeRecently(key);
        return cache.get(key);
    }
    
    public void put(int key, int value) {
        // 已经存在这个 key
        if(cache.containsKey(key)){
            // 修改 value 值
            cache.put(key, value);
            // 将该元素提升为最近使用过的
            makeRecently(key);
            return;
        }
        // 不存在这个 key
        // 如果容量满了
        if(cache.size() == cap){
            // 删除链表头第一个元素(最不常使用的)
            cache.removeEldest();
        }
        // 插入新元素
        cache.put(key, value);
    }

    // 将该元素提升为最近使用过的
    private void makeRecently(int key){
        int value = cache.get(key);
        // 删除该元素
        cache.remove(key);
        // 新增该元素
        cache.put(key, value);
    }
}

因此我们要实现 MyLinkedHashMap 的以下方法

class MyLinkedHashMap {

	// 获取 key 对应的 value 
	public int get(int key) {}
	// 新增一对 key, value 或修改 key 对应的 value
	public void put(int key, int value) {}
	// 删除 value 对应的元素
	public void remove(int key) {}
	// 删除链表首元素(也就是最近不被使用的元素)
	public void removeEldest() {}
	// 返回是否存在该 key
	public boolean containsKey(int key) {}
	// 返回当前容量
	public int size() {}
} 

MyLinkedHashMap 是有哈希表和双链表结合而成的,类中自然有这两个数据结构。

class MyLinkedHashMap {
	// 哈希表
	HashMap<Integer, Node> map = new HashMap<>();
	// 双链表
	DoubleList doubleList = new DoubleList();
}

下面一一实现上述方法
get 方法
由于 LRUCache 中调用 get 方法时已经考虑了 key 不存在的情况,调用 MyLinkedHashMap 中的 get 方法时 key 一定时存在的,因此就不用考虑 key 不存在的情况了。

	// 获取 key 对应的 value 
	public int get(int key) {
		return map.get(key).value;
	}

put方法
由于 LRUCache 中调用 put 方法时可以新增,也可以修改,因此要在 MyLinkedHashMap 中的 put 方法考虑这两种情况

新增和删除要在哈希表和双链表中同时操作,保持一致性

	// 新增一对 key, value 或修改 key 对应的 value
	public void put(int key, int value) {
		// 已经存在该 key, 修改
		if(containsKey(key)) {
			map.get(key).value = value;
			return;
		}
		// 不存在该 key, 新增
		Node node = new Node(key, value);
		doubleList.addLast(node);
		map.put(key, node);
	}

remove 方法

	// 删除 value 对应的元素
	public void remove(int key) {
		Node node = map.get(key);
		doubleList.remove(node);
		map.remove(key);
	}

removeEldest 方法
这个方法也体现了为什么双链表中的节点应该同时保存 key 和 value ,因为需要删除双链表的首元素,还要删除 map 中对应的 key,因此要返回被删除的首元素节点,从首元素节点中获取 key。

	// 删除链表首元素(也就是最近不被使用的元素)
	public void removeEldest() {
		Node node = doubleList.removeFirst();
		map.remove(node.key);
	}

containsKey 方法
直接调用 map 的 containsKey() 方法。

	// 返回是否存在该 key
	public boolean containsKey(int key) {
		return map.containsKey(key);
	}

size 方法
直接调用 map 的 size 方法。

	// 返回当前容量
	public int size() {
		return map.size();
	}

这样,MyLinkedHashMap 就写完了,该类的完整代码如下

class MyLinkedHashMap {
	// 哈希表
	HashMap<Integer, Node> map = new HashMap<>();
	// 双链表
	DoubleList doubleList = new DoubleList();

	// 获取 key 对应的 value 
	public int get(int key) {
		return map.get(key).value;
	}
	
	// 新增一对 key, value 或修改 key 对应的 value
	public void put(int key, int value) {
		// 已经存在该 key, 修改
		if(containsKey(key)) {
			map.get(key).value = value;
			return;
		}
		// 不存在该 key, 新增
		Node node = new Node(key, value);
		doubleList.addLast(node);
		map.put(key, node);
	}
	
	// 删除 value 对应的元素
	public void remove(int key) {
		Node node = map.get(key);
		doubleList.remove(node);
		map.remove(key);
	}
	
	// 删除链表首元素(也就是最近不被使用的元素)
	public void removeEldest() {
		Node node = doubleList.removeFirst();
		map.remove(node.key);
	}
	
	// 返回是否存在该 key
	public boolean containsKey(int key) {
		return map.containsKey(key);
	}
	
	// 返回当前容量
	public int size() {
		return map.size();
	}
} 

实现双链表

由于 MyLinkedHashMap 中 map 是调用 java 现成的,而 DoubleList 不是 java 现成的,因此需要自己实现 DoubleList
DoubleList 的基本结构如下

class DoubleList {
	// 虚拟头节点、虚拟尾节点
	Node head, tail;
	// 双链表长度
	int size;
	
	// 构造方法
	public DoubleList() {
		head = new Node(-1, -1);
		tail = new Node(-1, -1);
		head.next = tail;
		tail.pre = head;
		size = 0;
	}
}

综合 MyLinkedHashMap 调用 DoubleList 的情况,需要实现 DoubleList 以下方法

class DoubleList {
	
	// 在链表尾部新增一个元素
	public void addLast(Node node) {}
	// 从双链表中删除指定元素
	public void remove(Node node) {}
	// 删除首元素
	public void removeFirst() {}
}

下面一一实现这些方法。
addLast 方法
在双链表尾部新增一个元素,要修改四个指针,注意顺序,防止指针丢失,先要修改不容易获得的节点的指针。

	// 在链表尾部新增一个元素
	public void addLast(Node node) {
		node.pre = tail.pre;
		node.next = tail;
		tail.pre.next = node;
		tail.pre = node;
		size++;
	}

remove 方法
从这个方法可以看出为什么选择双链表而不是单链表,因为需要在 O(1) 时间内删除任意位置的某个节点,删除一个节点需要它的前驱节点,单链表无法实现。

	// 从双链表中删除指定元素
	public Node remove(Node node) {
		node.pre.next = node.next;
		node.next.pre = node.pre;
		size--;
	}

removeFirst 方法
由于调用 removeFirst() 方法的只有 removeEldest() 方法,而 removeEldest() 方法被调用时 cache.size() == cap,而 cap 容量至少为1,因此双链表中是存在元素的,可以不用考虑双链表为空的情况。

	// 删除首元素
	public Node removeFirst() {
		// 考虑双链表为空的情况
		if(head.next == tail){
			return null;
		}
		// 双链表不为空
		// 获取双链表首元素
		Node node = head.next;
		remove(node);
        return node;
	}

因此 DoubleList 的完整代码如下

class DoubleList {
	// 虚拟头节点、虚拟尾节点
	Node head, tail;
	// 双链表长度
	int size;
	
	// 构造方法
	public DoubleList() {
		head = new Node(-1, -1);
		tail = new Node(-1, -1);
		head.next = tail;
		tail.pre = head;
		size = 0;
	}

	// 在链表尾部新增一个元素
	public void addLast(Node node) {
		node.pre = tail.pre;
		node.next = tail;
		tail.pre.next = node;
		tail.pre = node;
		size++;
	}

	// 从双链表中删除指定元素
	public void remove(Node node) {
		node.pre.next = node.next;
		node.next.pre = node.pre;
		size--;
	}

	// 删除首元素
	public Node removeFirst() {
		// 考虑双链表为空的情况
		if(head.next == tail){
			return null;
		}
		// 双链表不为空
		// 获取双链表首元素
		Node node = head.next;
		remove(node);
        return node;
	}
}

再补一下双链表的节点类

class Node {
	// key, value
	int key, value;
	// 前驱节点, 后继节点
	Node pre, next;

	public Node() {}

	public Node(int key, int value) {
		this.key = key;
		this.value = value;
	}
}

自己实现的完整代码

最后,LRUcache 的完整代码如下

class LRUCache {
    // 缓存容量
    int cap;
    // 哈希链表
    MyLinkedHashMap cache = new MyLinkedHashMap();

    public LRUCache(int capacity) {
        this.cap = capacity;
    }
    
    public int get(int key) {
        // 如果不存在这个 key, 返回 -1
        if(!cache.containsKey(key)){
            return -1;
        }
        // 存在这个 key
        // 将该元素提升为最近使用过的
        makeRecently(key);
        return cache.get(key);
    }
    
    public void put(int key, int value) {
        // 已经存在这个 key
        if(cache.containsKey(key)){
            // 修改 value 值
            cache.put(key, value);
            // 将该元素提升为最近使用过的
            makeRecently(key);
            return;
        }
        // 不存在这个 key
        // 如果容量满了
        if(cache.size() == cap){
            // 删除链表头第一个元素(最不常使用的)
            cache.removeEldest();
        }
        // 插入新元素
        cache.put(key, value);
    }

    // 将该元素提升为最近使用过的
    private void makeRecently(int key){
        int value = cache.get(key);
        // 删除该元素
        cache.remove(key);
        // 新增该元素
        cache.put(key, value);
    }
}

class MyLinkedHashMap {
	// 哈希表
	HashMap<Integer, Node> map = new HashMap<>();
	// 双链表
	DoubleList doubleList = new DoubleList();

	// 获取 key 对应的 value 
	public int get(int key) {
		return map.get(key).value;
	}
	
	// 新增一对 key, value 或修改 key 对应的 value
	public void put(int key, int value) {
		// 已经存在该 key, 修改
		if(containsKey(key)) {
			map.get(key).value = value;
			return;
		}
		// 不存在该 key, 新增
		Node node = new Node(key, value);
		doubleList.addLast(node);
		map.put(key, node);
	}
	
	// 删除 value 对应的元素
	public void remove(int key) {
		Node node = map.get(key);
		doubleList.remove(node);
		map.remove(key);
	}
	
	// 删除链表首元素(也就是最近不被使用的元素)
	public void removeEldest() {
		Node node = doubleList.removeFirst();
		map.remove(node.key);
	}
	
	// 返回是否存在该 key
	public boolean containsKey(int key) {
		return map.containsKey(key);
	}
	
	// 返回当前容量
	public int size() {
		return map.size();
	}
}

class DoubleList {
	// 虚拟头节点、虚拟尾节点
	Node head, tail;
	// 双链表长度
	int size;
	
	// 构造方法
	public DoubleList() {
		head = new Node(-1, -1);
		tail = new Node(-1, -1);
		head.next = tail;
		tail.pre = head;
		size = 0;
	}

	// 在链表尾部新增一个元素
	public void addLast(Node node) {
		node.pre = tail.pre;
		node.next = tail;
		tail.pre.next = node;
		tail.pre = node;
		size++;
	}

	// 从双链表中删除指定元素
	public void remove(Node node) {
		node.pre.next = node.next;
		node.next.pre = node.pre;
		size--;
	}

	// 删除首元素
	public Node removeFirst() {
		// 考虑双链表为空的情况
		if(head.next == tail){
			return null;
		}
		// 双链表不为空
		// 获取双链表首元素
		Node node = head.next;
		remove(node);
        return node;
	}
}

class Node {
	// key, value
	int key, value;
	// 前驱节点, 后继节点
	Node pre, next;

	public Node() {}

	public Node(int key, int value) {
		this.key = key;
		this.value = value;
	}
}

总结

通过自己阅读别人的题解,再自己实现了几遍,写出了这篇题解,也是为了帮助自己更好的理解。然而在实现的过程中仍然出了一些bug,可想在面试的时候把上述代码无bug一次写出还是比较困难的。通过自己实现这道题,也理解了东哥所说的“算法就像搭乐高”,比如先用 MyLinkedHashMap 去实现 LRUcache,再去补 MyLinkedHashMap 中的方法实现,而 MyLinkedHashMap 中又用到 DoubleList 中的一些方法,用到了哪些方法再去补,这样对我来说比较容易记忆,以后只要会用自带的 LinkedHashMap 做,就能一步步改成自己实现的了,需要哪个就去造哪个。如果对整个流程用到哪些类都比较清晰,也可以先写 Node 类,再用 Node 类实现 DoubleList,再用DoubleList 类实现 MyLinkedHashMap ,最后用 MyLinkedHashMap 类实现 LRUcache,这不就像搭乐高了吗?

参考资料

算法就像搭乐高:带你手撸 LRU 算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dotJunz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值