6.1.1差错控制方式
1、差错控制编码
差错控制编码也称纠错编码,属于信道编码的范畴。
编码目的:纠检传输差错,降低误码率,提高通信质量
设计思想:在发送的信码中增加一些多余码元(监督码元)这就好像给信码进行包装,这些监督码元与信息码元之间存在某种数学约束关系,接收时利用这种关系来发现或纠正传输过程中产生的错码。
2、图像通信的差错控制方式
- 前向差错控制技术:加入冗余,不需要解码器能够减小传输差错的影响
- 容错编码技术:在误码情况下,以最小的冗余获得最大的增益的技术
- 差错后处理技术:已发生的错误,通过误码掩盖产生视觉可接受的图像
1/2是在编码段来考虑的,3是在译码端
自动请求重传:
编码器对输入的信码进行分组编码(加入督元)后,发送并暂存于缓冲存储器中。
解码器若检出错码,则产生一个重发指令。此指令经过反向信道送到发送端。由发送端重发控制器控制缓冲存储器重发一次。
解码器未发现错码时,经过反向信道发出不需重发指令。发送端收到此指令后,即继续发送后一码组,发送端的缓冲存储器中的内容也随之更新。
接收端仅当解码器认为接收信息码元正确时,才将信码送给收信者,否则在输出缓冲存储器中删除接收码元。
自动请求重发系统——停止等待ARQ系统
这个方法传输效率低,为了提高效率,发端不需要等待,一直发送信息。
自动请求重发系统——回退N帧的ARQ系统
如果要把效率再提高一些,仅重发出错的码组,不需要从出错那组全部重传
自动请求重发系统——选择重传的ARQ系统
3、自动请求重发系统——特点
优点:
- 码率较高。用较少的监督码元就能使误码率降到很低;
- 检错的计算复杂度较低;
- 检错用的编码方法和加性干扰的统计特性基本无关,能适应不同特性的信道。
缺点:
- 需双向信道来重发,不适用单向信道和一点到多点的通信系统。
- 重发使得ARQ系统的传输效率降低。
- 信道干扰严重时,将发生因反复重发而造成事实上的通信中断。
- 不适用于要求实时通信的场合,例如电话通信。
6.1.2线性分组码的生成
信道编码和传输是图像通信的两个重要的环节,线性分组码是信道编码中的最基本的一类编码。
1、线性分组码编码——基本概念
分组码
将信息码 K 个分为一组,按照一定规则为每组信息码附加 r 个监督码的编码称为分组码。
线性码
按照一组线性方程构成的代数码,即每个码字的监督码元是信息码元的线性组合。或者说本码组的监督码元仅仅监督本码组的信息码元。
线性分组码
按照─组线性方程构成的分组码。
插播偶监督原则
特点:只有一个监督位。
编码规则:是先将所要传输的数据码元(信息变)分组,在分组信息码元后面附加1位监督码,使得该码组中信息码和监督码合在一起“1"的个数为偶数则称为偶校验;若为奇数则称为奇校验。
设码组长度为n,表示为(an-1,an-2...a1,a0 )。其中前n-1位为信息码元,第n位为监督位a0。
偶监督:码组中“1"的个数为偶数。即信息位与监督位的约束关系应为
当S=0 ,就认为无错;若S=1,就认为有错。把S叫做校正子。
2、线性分组码编码——构造原理
以K=4为例,(7,4)码
G矩阵(生成矩阵)的性质:
- G矩阵的各行是线性无关的。A=[]·G任一码组A都是G的各行的线性组合。G共有k行,若它们线性无关,则可以组合出种不同的码组A。
- G的各行本身就是一个码组。所以若有k个线性无关的码组,则可由这k个线性无关的码组构成生成矩阵G,并且由它生成其余码组
线性分组码性质 :
1、封闭性
一个线性分组码中的任意两个许用的码组之和(逐位模2加,二元域,异或) 仍为该码中的一个许用码组
2、最小距离d0
d0就是码的最小重量(除全“0”码组外)码的重量指这个码组中1的个数
根据码的封闭性,可知两个码组和之间的距离(即对应位不同的数目)必定是另一个码组(+)的重量(即“1”"的数目)。
6.1.3线性分组码的译码
校正子和错码位置的关系
H矩阵和G矩阵的关系
- 已知生成矩阵可以求得监督矩阵,已知监督矩阵可以求得生成矩阵
- 由典型的H和G产生的分组码属于系统码。换言之,系统码的H和G 都是典型形式。
- 系统码的特点是编码后,信元位置不变,督元附在其后。
(n,k)线性分组码译码的三个步骤:
(1)由接收到的码组B计算:S=B·
(2)由S找到错误图样E
(3)由公式A=B+E得到译码器译出的码组,即发送端的码组
注:在错码较多,已超过这种编码的检错能力时,接收码组B将变为另一许用码组,则公式 B.=0仍能成立。这样的错码是不可检测的。
线性分组码中任意的一个许用码组A,它跟H的转置之间满足A*=0。
6.1.4循环码的码多项式
循环码——基本概念
循环码是(n,k)线性分组码的一个重要子类。
- 编译码设备简单,检(纠)错能力较强;
- 有RS、BCH等高效子类码,应用广泛。(RS码是一种纠错性能很强的线性纠错码,能够纠正随机错误和突发错误。RS码是一种多进制BCH码,能够同时纠正多个码元错误)
循环码除了具有线性分组码的一般性质外,还具有循环性。
循环码的码多项式——码多项式定义
码多项式的按模运算
在循环码中,若A(x)是一个长为n的许用码组,则在按模x"+1运算下,也是该编码中的一个许用码组,即若,则也是该编码中的一个许用码组。
这是因为,正是A(x)代表的码组向左循环移位 i 次的结果。
一个长为n的循环码的码多项式,都是按模(x^n + 1)运算的一个余式。
6.1.5 循环码的编解码
循环码是一个线性分组码,所以其生成矩阵G可由k个线性无关的码组构成。
如何寻找这k个线性无关的码组呢?
在(n,k)循环码的个码组中挑出一个前面(k-1)位都是“0"的码组——用g(x)表示;
根据循环性,g(x)、xg(x)、g(x)....、g(x)都是该循环码的码组,且线性无关。
表明:
所有码多项式A(x)都可被g(x)整除,而且任意一个次数不大于(k-1)的多项式乘g(x)都是码多项式。
换言之,任一循环码多项式A(x)都是g(x)的倍式。
循环码——生成多项式g(x)
循环码——编码
(n,k)码
g(x):生成多项式
m(x):信息多项式
编码方式1
循环码的码多项式A(x)为:A(x) = m(x)g(x) 由此可见,由m(x)与g(x)相乘,就可生成循环码的全部码字,但是是非系统码。
编码方式2(系统循环码的编码步骤)
循环码——解码
目的:检错、纠错
检错:对接收码组B(x)用 B(x)/g(x) 。因为任一码组多项式A(x)都能被生成多项式g(x)整除。
若能除尽,则无错;若除不尽而有余项,则表示在传输中发生错误。
注:有错码的接收码组也有可能被g(x)整除。这时的错码就不能检出。这种错误称为不可检错误。
纠错:须知错码位置,即错误图样。
1、作 B(x)/g(x),得出余式,即循环码的校正子多项式S(X)
2、由S(x)得到错误图样E(x),确定错码位置;
3、从B(x)中减去E(x),纠正成原发送码组A(x)=B(x)-E(x)。
6.2.1图像信号的模拟调制方式